CNN图像处理中橘子的自动分类

P. Arena, L. Fortuna, G. Manganaro, S. Spina
{"title":"CNN图像处理中橘子的自动分类","authors":"P. Arena, L. Fortuna, G. Manganaro, S. Spina","doi":"10.1109/CNNA.1994.381631","DOIUrl":null,"url":null,"abstract":"A new image processing technique based on cellular neural networks for improving the automatic classification of fruits (in particular, oranges) is introduced. It allows the digitised orange images to be processed in order to highlight some peculiarities of the fruits. In this way the following classification step is greatly simplified and improved. Moreover, the real-time processing characteristic of CNNs is a very advantageous point over the traditional computing resources commonly used in this kind of processing. The proposed task is accomplished by the choice of suitable templates in a simple CNN model. These templates are described and some examples are reported.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"CNN image processing for the automatic classification of oranges\",\"authors\":\"P. Arena, L. Fortuna, G. Manganaro, S. Spina\",\"doi\":\"10.1109/CNNA.1994.381631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new image processing technique based on cellular neural networks for improving the automatic classification of fruits (in particular, oranges) is introduced. It allows the digitised orange images to be processed in order to highlight some peculiarities of the fruits. In this way the following classification step is greatly simplified and improved. Moreover, the real-time processing characteristic of CNNs is a very advantageous point over the traditional computing resources commonly used in this kind of processing. The proposed task is accomplished by the choice of suitable templates in a simple CNN model. These templates are described and some examples are reported.<<ETX>>\",\"PeriodicalId\":248898,\"journal\":{\"name\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1994.381631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

介绍了一种新的基于细胞神经网络的图像处理技术,用于改进水果(特别是橘子)的自动分类。它允许对数字化的橙色图像进行处理,以突出水果的一些特点。这样,下面的分类步骤就大大简化和改进了。此外,cnn的实时处理特性是其相对于此类处理中常用的传统计算资源的一个非常有利的点。该任务通过在简单的CNN模型中选择合适的模板来完成。对这些模板进行了描述,并报告了一些示例
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN image processing for the automatic classification of oranges
A new image processing technique based on cellular neural networks for improving the automatic classification of fruits (in particular, oranges) is introduced. It allows the digitised orange images to be processed in order to highlight some peculiarities of the fruits. In this way the following classification step is greatly simplified and improved. Moreover, the real-time processing characteristic of CNNs is a very advantageous point over the traditional computing resources commonly used in this kind of processing. The proposed task is accomplished by the choice of suitable templates in a simple CNN model. These templates are described and some examples are reported.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realisation of a digital cellular neural network for image processing Convergence and stability of the FSR CNN model A versatile CMOS building block for fully analogically-programmable VLSI cellular neural networks A fast, complex and efficient test implementation of the CNN Universal Machine Optoelectronic cellular neural networks based on amorphous silicon thin film technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1