基于粒子滤波的多路径环境下AoA室内定位

Aysha Alteneiji, U. Ahmad, Kin Poon, N. Ali, Nawaf I. Almoosa
{"title":"基于粒子滤波的多路径环境下AoA室内定位","authors":"Aysha Alteneiji, U. Ahmad, Kin Poon, N. Ali, Nawaf I. Almoosa","doi":"10.1109/ICSPIS51252.2020.9340130","DOIUrl":null,"url":null,"abstract":"Filter (PF) is a promising technique for indoor location estimation and tracking. In an indoor environment, localization has become significantly challenging due to multipath reflections. This work addresses the problem of indoor localization of a Moving Target (MT) in a rich multipath environment by fusing acceleration data obtained from Inertial Measurement Unit (IMU) sensors and Angle of Arrival (AoA) measurements. First, the moving target position is predicted using the IMU sensor data. Thereafter, MUltiple SIgnal Classification (MUSIC) algorithm is applied to estimate the AoA of the multipath components. IMU sensor data and the estimated AoA of the multipath components are then fused using the probabilistic framework of the PF to estimate the moving target location. Simulation results demonstrate that the proposed system can achieve a location accuracy of less than $2m$ in a rich multipath environment with only 2 WiFi Access Points (APs).","PeriodicalId":373750,"journal":{"name":"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Indoor Localization in Multi-Path Environment based on AoA with Particle Filter\",\"authors\":\"Aysha Alteneiji, U. Ahmad, Kin Poon, N. Ali, Nawaf I. Almoosa\",\"doi\":\"10.1109/ICSPIS51252.2020.9340130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Filter (PF) is a promising technique for indoor location estimation and tracking. In an indoor environment, localization has become significantly challenging due to multipath reflections. This work addresses the problem of indoor localization of a Moving Target (MT) in a rich multipath environment by fusing acceleration data obtained from Inertial Measurement Unit (IMU) sensors and Angle of Arrival (AoA) measurements. First, the moving target position is predicted using the IMU sensor data. Thereafter, MUltiple SIgnal Classification (MUSIC) algorithm is applied to estimate the AoA of the multipath components. IMU sensor data and the estimated AoA of the multipath components are then fused using the probabilistic framework of the PF to estimate the moving target location. Simulation results demonstrate that the proposed system can achieve a location accuracy of less than $2m$ in a rich multipath environment with only 2 WiFi Access Points (APs).\",\"PeriodicalId\":373750,\"journal\":{\"name\":\"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS51252.2020.9340130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS51252.2020.9340130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

滤波(PF)是一种很有前途的室内位置估计和跟踪技术。在室内环境中,由于多径反射,定位变得非常具有挑战性。本研究通过融合惯性测量单元(IMU)传感器获得的加速度数据和到达角(AoA)测量数据,解决了丰富多径环境下运动目标(MT)的室内定位问题。首先,利用IMU传感器数据预测运动目标位置;然后,采用多信号分类(MUSIC)算法估计多径分量的AoA。然后,利用PF的概率框架将IMU传感器数据和估计的多径分量的AoA融合以估计运动目标的位置。仿真结果表明,在只有2个WiFi接入点(ap)的富多径环境下,该系统可以实现低于200万美元的定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indoor Localization in Multi-Path Environment based on AoA with Particle Filter
Filter (PF) is a promising technique for indoor location estimation and tracking. In an indoor environment, localization has become significantly challenging due to multipath reflections. This work addresses the problem of indoor localization of a Moving Target (MT) in a rich multipath environment by fusing acceleration data obtained from Inertial Measurement Unit (IMU) sensors and Angle of Arrival (AoA) measurements. First, the moving target position is predicted using the IMU sensor data. Thereafter, MUltiple SIgnal Classification (MUSIC) algorithm is applied to estimate the AoA of the multipath components. IMU sensor data and the estimated AoA of the multipath components are then fused using the probabilistic framework of the PF to estimate the moving target location. Simulation results demonstrate that the proposed system can achieve a location accuracy of less than $2m$ in a rich multipath environment with only 2 WiFi Access Points (APs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Chaos-Based Cryptoystem for Voice Encryption [Copyright notice] The Effect of Obstructive Sleep Apnea on the Cardiovascular Variability Indoor Localization in Multi-Path Environment based on AoA with Particle Filter Introducing a Mobile App to Increase Cybersecurity Awareness in MENA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1