DS-CDMA:超宽带通信的调制技术选择

P. Runkle, J. McCorkle, T. Miller, M. Welborn
{"title":"DS-CDMA:超宽带通信的调制技术选择","authors":"P. Runkle, J. McCorkle, T. Miller, M. Welborn","doi":"10.1109/UWBST.2003.1267865","DOIUrl":null,"url":null,"abstract":"We show that because of drastic differences in the fading statistics between ultra wide bandwidth (UWB) multicarrier and direct sequence code division multiple access (DS-CDMA) approaches, DS easily scales to Gbps rates while multicarrier architectures have severe difficulty. Both DS-CDMA and orthogonal frequency division multiple access (OFDM) are well understood and proven modulation techniques in conventional (narrowband) commercial technologies (e.g. DS-CDMA in cell phones; OFDM in IEEE 802.11a/g). The maturity of these approaches, however, is vastly different when applied to ultrawideband (UWB) systems. Already implemented and operating in silicon, DS-CDMA architectures have proven to be the most mature and scaleable for UWB on both a theoretical as well as implementation basis. Among the proposed approaches before the IEEE 802.15.3a standards committee, the DS-CDMA transmitted waveform (which is the \"thing\" being standardized) is uniquely capable of serving the broadest diversity of applications. It can, for example, allow very low-cost low-power transmit-only devices (even at Gbps rates) because it requires no FFT or DAC or DSP. At the same time, receivers can incorporate varying degrees of DSP to provide scaleable power/cost versus performance. We present performance comparisons of DS-CDMA [Document IEEE.15-03/153r10, July 2003] vs. the proposed multiband MB-OFDM architecture [Document IEEE 802.15-03/267r0, July 2003] for outage range in a variety of multipath environments. Moreover, we describe how DS-CDMA UWB architectures can support robust and flexible multiuser capabilities, protect against in-band interference, and provide high-resolution ranging capabilities for safety-of-life applications.","PeriodicalId":218975,"journal":{"name":"IEEE Conference on Ultra Wideband Systems and Technologies, 2003","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"DS-CDMA: the modulation technology of choice for UWB communications\",\"authors\":\"P. Runkle, J. McCorkle, T. Miller, M. Welborn\",\"doi\":\"10.1109/UWBST.2003.1267865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that because of drastic differences in the fading statistics between ultra wide bandwidth (UWB) multicarrier and direct sequence code division multiple access (DS-CDMA) approaches, DS easily scales to Gbps rates while multicarrier architectures have severe difficulty. Both DS-CDMA and orthogonal frequency division multiple access (OFDM) are well understood and proven modulation techniques in conventional (narrowband) commercial technologies (e.g. DS-CDMA in cell phones; OFDM in IEEE 802.11a/g). The maturity of these approaches, however, is vastly different when applied to ultrawideband (UWB) systems. Already implemented and operating in silicon, DS-CDMA architectures have proven to be the most mature and scaleable for UWB on both a theoretical as well as implementation basis. Among the proposed approaches before the IEEE 802.15.3a standards committee, the DS-CDMA transmitted waveform (which is the \\\"thing\\\" being standardized) is uniquely capable of serving the broadest diversity of applications. It can, for example, allow very low-cost low-power transmit-only devices (even at Gbps rates) because it requires no FFT or DAC or DSP. At the same time, receivers can incorporate varying degrees of DSP to provide scaleable power/cost versus performance. We present performance comparisons of DS-CDMA [Document IEEE.15-03/153r10, July 2003] vs. the proposed multiband MB-OFDM architecture [Document IEEE 802.15-03/267r0, July 2003] for outage range in a variety of multipath environments. Moreover, we describe how DS-CDMA UWB architectures can support robust and flexible multiuser capabilities, protect against in-band interference, and provide high-resolution ranging capabilities for safety-of-life applications.\",\"PeriodicalId\":218975,\"journal\":{\"name\":\"IEEE Conference on Ultra Wideband Systems and Technologies, 2003\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Ultra Wideband Systems and Technologies, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UWBST.2003.1267865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Ultra Wideband Systems and Technologies, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UWBST.2003.1267865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

我们发现,由于超宽带(UWB)多载波和直接序列码分多址(DS- cdma)方法在衰落统计方面的巨大差异,DS很容易扩展到Gbps速率,而多载波架构则有严重的困难。DS-CDMA和正交频分多址(OFDM)都是传统(窄带)商业技术(例如,移动电话中的DS-CDMA;IEEE 802.11a/g中的OFDM)。然而,这些方法的成熟度在应用于超宽带(UWB)系统时却大不相同。已经在硅上实现和运行的DS-CDMA架构在理论和实现基础上都被证明是超宽带最成熟和可扩展的。在IEEE 802.15.3a标准委员会提出的方法中,DS-CDMA传输波形(即正在标准化的“东西”)具有独特的能力,可以服务于最广泛的应用多样性。例如,它可以允许非常低成本的低功耗传输设备(即使在Gbps速率下),因为它不需要FFT或DAC或DSP。同时,接收器可以结合不同程度的DSP,以提供可扩展的功率/成本与性能。我们提出了DS-CDMA [IEEE.15-03/153r10, July 2003]和提议的多频段MB-OFDM架构[IEEE 802.15-03/267r0, July 2003]在各种多路径环境下的中断范围的性能比较。此外,我们还描述了DS-CDMA超宽带架构如何支持强大而灵活的多用户功能,防止带内干扰,并为生命安全应用提供高分辨率测距功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DS-CDMA: the modulation technology of choice for UWB communications
We show that because of drastic differences in the fading statistics between ultra wide bandwidth (UWB) multicarrier and direct sequence code division multiple access (DS-CDMA) approaches, DS easily scales to Gbps rates while multicarrier architectures have severe difficulty. Both DS-CDMA and orthogonal frequency division multiple access (OFDM) are well understood and proven modulation techniques in conventional (narrowband) commercial technologies (e.g. DS-CDMA in cell phones; OFDM in IEEE 802.11a/g). The maturity of these approaches, however, is vastly different when applied to ultrawideband (UWB) systems. Already implemented and operating in silicon, DS-CDMA architectures have proven to be the most mature and scaleable for UWB on both a theoretical as well as implementation basis. Among the proposed approaches before the IEEE 802.15.3a standards committee, the DS-CDMA transmitted waveform (which is the "thing" being standardized) is uniquely capable of serving the broadest diversity of applications. It can, for example, allow very low-cost low-power transmit-only devices (even at Gbps rates) because it requires no FFT or DAC or DSP. At the same time, receivers can incorporate varying degrees of DSP to provide scaleable power/cost versus performance. We present performance comparisons of DS-CDMA [Document IEEE.15-03/153r10, July 2003] vs. the proposed multiband MB-OFDM architecture [Document IEEE 802.15-03/267r0, July 2003] for outage range in a variety of multipath environments. Moreover, we describe how DS-CDMA UWB architectures can support robust and flexible multiuser capabilities, protect against in-band interference, and provide high-resolution ranging capabilities for safety-of-life applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy of relative distance measurement with ultra wideband system Diversity gain in ultra wideband impulse radio (UWB-IR) A comparison between UWB and DSSS for use in a multiple access secure wireless sensor network An application of SAGE algorithm for UWB propagation channel estimation Dithering and /spl Sigma//spl Delta/ modulation in mono-bit digital receivers for ultra-wideband communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1