基于多目标遗传优化的最优通信网络设计

R. Kumar, V.P. Krishnan, K.S. Santhanakrishnan
{"title":"基于多目标遗传优化的最优通信网络设计","authors":"R. Kumar, V.P. Krishnan, K.S. Santhanakrishnan","doi":"10.1109/ICIT.2000.854210","DOIUrl":null,"url":null,"abstract":"Designing an optimal network requires careful optimization of conflicting requirements. It is an NP hard problem. Traditional approaches to this problem have been based either on heuristics or on rigorous mathematical programming, queuing theory and network flow concepts. In this work, the authors describe the use of the multi-objective genetic optimization technique to obtain a Pareto front-a set of solutions which are optimal with respect to a set of constraints and noninferior to each other-for the network design problem. A prototype is developed and the simulator is currently being tested on different sets of inputs.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of an optimal communication network using multiobjective genetic optimization\",\"authors\":\"R. Kumar, V.P. Krishnan, K.S. Santhanakrishnan\",\"doi\":\"10.1109/ICIT.2000.854210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing an optimal network requires careful optimization of conflicting requirements. It is an NP hard problem. Traditional approaches to this problem have been based either on heuristics or on rigorous mathematical programming, queuing theory and network flow concepts. In this work, the authors describe the use of the multi-objective genetic optimization technique to obtain a Pareto front-a set of solutions which are optimal with respect to a set of constraints and noninferior to each other-for the network design problem. A prototype is developed and the simulator is currently being tested on different sets of inputs.\",\"PeriodicalId\":405648,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2000.854210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设计一个最优网络需要仔细优化相互冲突的需求。这是一个NP困难问题。解决这一问题的传统方法要么基于启发式方法,要么基于严格的数学规划、排队论和网络流概念。在这项工作中,作者描述了使用多目标遗传优化技术来获得网络设计问题的帕累托前沿-一组相对于一组约束且彼此不劣的最优解。一个原型正在开发,模拟器目前正在不同的输入集上进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of an optimal communication network using multiobjective genetic optimization
Designing an optimal network requires careful optimization of conflicting requirements. It is an NP hard problem. Traditional approaches to this problem have been based either on heuristics or on rigorous mathematical programming, queuing theory and network flow concepts. In this work, the authors describe the use of the multi-objective genetic optimization technique to obtain a Pareto front-a set of solutions which are optimal with respect to a set of constraints and noninferior to each other-for the network design problem. A prototype is developed and the simulator is currently being tested on different sets of inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of nonlinear nonautonomous state space systems from input-output measurements On stabilizing gains far digital control systems Developing an experimental mobile robot-ROVEL Failure detection/management in launch vehicle avionics Static UPS failures-origin and possible prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1