A. Sappa, Niki Aifanti, S. Malassiotis, M. Strintzis
{"title":"基于先验知识的运动模型表示","authors":"A. Sappa, Niki Aifanti, S. Malassiotis, M. Strintzis","doi":"10.1142/9789812834461_0016","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for human walking modeling from monocular image sequences. A kinematics model and a walking motion model are introduced in order to exploit prior knowledge. The proposed technique consists of two steps. Initially, an efficient feature point selection and tracking approach is used to compute feature points’ trajectories. Peaks and valleys of these trajectories are used to detect key frames— frames where both legs are in contact with the floor. Secondly, motion models associated with each joint are locally tuned by using those key frames. Differently than previous approaches, this tuning process is not performed at every frame, reducing CPU time. In addition, the movement’s frequency is defined by the elapsed time between two consecutive key frames, which allows handling walking displacement at different speed. Experimental results with different video sequences are presented.","PeriodicalId":181042,"journal":{"name":"Progress in Computer Vision and Image Analysis","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prior Knowledge Based Motion Model Representation\",\"authors\":\"A. Sappa, Niki Aifanti, S. Malassiotis, M. Strintzis\",\"doi\":\"10.1142/9789812834461_0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach for human walking modeling from monocular image sequences. A kinematics model and a walking motion model are introduced in order to exploit prior knowledge. The proposed technique consists of two steps. Initially, an efficient feature point selection and tracking approach is used to compute feature points’ trajectories. Peaks and valleys of these trajectories are used to detect key frames— frames where both legs are in contact with the floor. Secondly, motion models associated with each joint are locally tuned by using those key frames. Differently than previous approaches, this tuning process is not performed at every frame, reducing CPU time. In addition, the movement’s frequency is defined by the elapsed time between two consecutive key frames, which allows handling walking displacement at different speed. Experimental results with different video sequences are presented.\",\"PeriodicalId\":181042,\"journal\":{\"name\":\"Progress in Computer Vision and Image Analysis\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Computer Vision and Image Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789812834461_0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789812834461_0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a new approach for human walking modeling from monocular image sequences. A kinematics model and a walking motion model are introduced in order to exploit prior knowledge. The proposed technique consists of two steps. Initially, an efficient feature point selection and tracking approach is used to compute feature points’ trajectories. Peaks and valleys of these trajectories are used to detect key frames— frames where both legs are in contact with the floor. Secondly, motion models associated with each joint are locally tuned by using those key frames. Differently than previous approaches, this tuning process is not performed at every frame, reducing CPU time. In addition, the movement’s frequency is defined by the elapsed time between two consecutive key frames, which allows handling walking displacement at different speed. Experimental results with different video sequences are presented.