用睡眠传感器跟踪

V. Veeravalli, J. Fuemmeler, A. Visvanathan
{"title":"用睡眠传感器跟踪","authors":"V. Veeravalli, J. Fuemmeler, A. Visvanathan","doi":"10.1109/ACSSC.2005.1600026","DOIUrl":null,"url":null,"abstract":"We study the problem of tracking an object that is moving randomly through a dense network of wireless sensors. We assume that each sensor has a limited range for detecting the presence of the object, and that the network is sufficiently dense so that the sensors cover the area of interest. In order to conserve energy the sensors may be put into a sleep mode with a timer that determines the sleep duration. We assume that a sensor that is asleep cannot be communicated with or woken up. Thus the sleep duration needs to be determined at the time the sensor goes to sleep based on all the information available to the sensor. The objective is to track the location of the object to within the accuracy of the range of the sensor. However, having sleeping sensors in the network could result in tracking errors, and hence there is a tradeoff between the energy savings and the tracking error that results from the sleeping actions at the sensors. We consider the design of sleeping policies that optimize this tradeoff.","PeriodicalId":326489,"journal":{"name":"Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005.","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tracking with Sleepy Sensors\",\"authors\":\"V. Veeravalli, J. Fuemmeler, A. Visvanathan\",\"doi\":\"10.1109/ACSSC.2005.1600026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of tracking an object that is moving randomly through a dense network of wireless sensors. We assume that each sensor has a limited range for detecting the presence of the object, and that the network is sufficiently dense so that the sensors cover the area of interest. In order to conserve energy the sensors may be put into a sleep mode with a timer that determines the sleep duration. We assume that a sensor that is asleep cannot be communicated with or woken up. Thus the sleep duration needs to be determined at the time the sensor goes to sleep based on all the information available to the sensor. The objective is to track the location of the object to within the accuracy of the range of the sensor. However, having sleeping sensors in the network could result in tracking errors, and hence there is a tradeoff between the energy savings and the tracking error that results from the sleeping actions at the sensors. We consider the design of sleeping policies that optimize this tradeoff.\",\"PeriodicalId\":326489,\"journal\":{\"name\":\"Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005.\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2005.1600026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2005.1600026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了在密集的无线传感器网络中跟踪随机移动的物体的问题。我们假设每个传感器都有一个有限的范围来检测物体的存在,并且网络足够密集,以便传感器覆盖感兴趣的区域。为了节省能量,传感器可以被设置为带有定时器的睡眠模式,定时器决定睡眠持续时间。我们假设处于睡眠状态的传感器无法与之通信或被唤醒。因此,睡眠持续时间需要在传感器进入睡眠状态时根据传感器可用的所有信息确定。目标是跟踪物体的位置到传感器范围的精度范围内。然而,在网络中使用休眠传感器可能会导致跟踪错误,因此在节省能源和传感器上的休眠动作导致的跟踪错误之间存在权衡。我们考虑设计睡眠策略来优化这种权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking with Sleepy Sensors
We study the problem of tracking an object that is moving randomly through a dense network of wireless sensors. We assume that each sensor has a limited range for detecting the presence of the object, and that the network is sufficiently dense so that the sensors cover the area of interest. In order to conserve energy the sensors may be put into a sleep mode with a timer that determines the sleep duration. We assume that a sensor that is asleep cannot be communicated with or woken up. Thus the sleep duration needs to be determined at the time the sensor goes to sleep based on all the information available to the sensor. The objective is to track the location of the object to within the accuracy of the range of the sensor. However, having sleeping sensors in the network could result in tracking errors, and hence there is a tradeoff between the energy savings and the tracking error that results from the sleeping actions at the sensors. We consider the design of sleeping policies that optimize this tradeoff.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Construction of M-QAM STCC Based on QPSK STCC Multi-Source Cooperative Networks with Distributed Convolutional Coding Synchronization of Multiple UWB Piconets Source and Channel Coding for Quasi-Static Fading Channels A Joint Precoding and Scheduling Technique for Multiuser MIMO Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1