用代码概念图更好地建模编程世界-增强多模态学习

M. Weyssow, H. Sahraoui, Bang Liu
{"title":"用代码概念图更好地建模编程世界-增强多模态学习","authors":"M. Weyssow, H. Sahraoui, Bang Liu","doi":"10.1145/3510455.3512771","DOIUrl":null,"url":null,"abstract":"The progress made in code modeling has been tremendous in recent years thanks to the design of natural language processing learning approaches based on state-of-the-art model architectures. Nevertheless, we believe that the current state-of-the-art does not focus enough on the full potential that data may bring to a learning process in software engineering. Our vision articulates on the idea of leveraging multi-modal learning approaches to modeling the programming world. In this paper, we investigate one of the underlying idea of our vision whose objective based on concept graphs of identifiers aims at leveraging high-level relationships between domain concepts manipulated through particular language constructs. In particular, we propose to enhance an existing pretrained language model of code by joint-learning it with a graph neural network based on our concept graphs. We conducted a preliminary evaluation that shows gain of effectiveness of the models for code search using a simple joint-learning method and prompts us to further investigate our research vision.","PeriodicalId":416186,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Better Modeling the Programming World with Code Concept Graphs-augmented Multi-modal Learning\",\"authors\":\"M. Weyssow, H. Sahraoui, Bang Liu\",\"doi\":\"10.1145/3510455.3512771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The progress made in code modeling has been tremendous in recent years thanks to the design of natural language processing learning approaches based on state-of-the-art model architectures. Nevertheless, we believe that the current state-of-the-art does not focus enough on the full potential that data may bring to a learning process in software engineering. Our vision articulates on the idea of leveraging multi-modal learning approaches to modeling the programming world. In this paper, we investigate one of the underlying idea of our vision whose objective based on concept graphs of identifiers aims at leveraging high-level relationships between domain concepts manipulated through particular language constructs. In particular, we propose to enhance an existing pretrained language model of code by joint-learning it with a graph neural network based on our concept graphs. We conducted a preliminary evaluation that shows gain of effectiveness of the models for code search using a simple joint-learning method and prompts us to further investigate our research vision.\",\"PeriodicalId\":416186,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510455.3512771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510455.3512771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,由于基于最先进的模型体系结构的自然语言处理学习方法的设计,代码建模取得了巨大的进展。然而,我们认为当前的技术水平并没有充分关注数据在软件工程学习过程中可能带来的全部潜力。我们的愿景阐明了利用多模态学习方法对编程世界建模的想法。在本文中,我们研究了我们愿景的一个基本思想,其目标是基于标识符的概念图,旨在利用通过特定语言结构操纵的领域概念之间的高级关系。特别地,我们提出通过与基于概念图的图神经网络联合学习来增强现有的预训练代码语言模型。我们进行了初步评估,显示了使用简单联合学习方法的代码搜索模型的有效性,并促使我们进一步研究我们的研究愿景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Better Modeling the Programming World with Code Concept Graphs-augmented Multi-modal Learning
The progress made in code modeling has been tremendous in recent years thanks to the design of natural language processing learning approaches based on state-of-the-art model architectures. Nevertheless, we believe that the current state-of-the-art does not focus enough on the full potential that data may bring to a learning process in software engineering. Our vision articulates on the idea of leveraging multi-modal learning approaches to modeling the programming world. In this paper, we investigate one of the underlying idea of our vision whose objective based on concept graphs of identifiers aims at leveraging high-level relationships between domain concepts manipulated through particular language constructs. In particular, we propose to enhance an existing pretrained language model of code by joint-learning it with a graph neural network based on our concept graphs. We conducted a preliminary evaluation that shows gain of effectiveness of the models for code search using a simple joint-learning method and prompts us to further investigate our research vision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating User Perceptions of Conversational Agents for Software-related ExploratoryWeb Search Black Box Technique to Reduce Energy Consumption of Android Apps Utilizing Persistence for Post Facto Suppression of Invalid Anomalies Using System Logs Statistical Reasoning About Programs Title Page iii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1