降雨过程Bartlett-Lewis模式的扩展

A. Salim, Y. Pawitan
{"title":"降雨过程Bartlett-Lewis模式的扩展","authors":"A. Salim, Y. Pawitan","doi":"10.1191/1471082X02st049oa","DOIUrl":null,"url":null,"abstract":"While the Bartlett-Lewis model has been widely used for modelling rainfall processes at a fixed point in space over time, there are observed features, such as longer-scale dependence, which are not well fitted by the model. In this paper, we study an extension where we put an extra layer in the clustered Poisson process of storm origins. We also investigate the Pareto inter-arrival time for the storm origins, which has been used to model web-traffic data. We derive the theoretical first and second-order properties of the multi-layer clustered Poisson processes, but generally we have to rely on Monte Carlo techniques. The models are fitted to hourly rainfall data from Valentia observatory in southwest Ireland, where the extensions are shown to improve on the standard models. We generalize these models further by allowing some parameters of the models to be a function of some covariates. An application using data from Valentia observatory and Belmullet shows how to use this class of models to analyze the association between the rainfall pattern and the North Atlantic Oscillation (NAO) index.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Extensions of the Bartlett-Lewis model for rainfall processes\",\"authors\":\"A. Salim, Y. Pawitan\",\"doi\":\"10.1191/1471082X02st049oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the Bartlett-Lewis model has been widely used for modelling rainfall processes at a fixed point in space over time, there are observed features, such as longer-scale dependence, which are not well fitted by the model. In this paper, we study an extension where we put an extra layer in the clustered Poisson process of storm origins. We also investigate the Pareto inter-arrival time for the storm origins, which has been used to model web-traffic data. We derive the theoretical first and second-order properties of the multi-layer clustered Poisson processes, but generally we have to rely on Monte Carlo techniques. The models are fitted to hourly rainfall data from Valentia observatory in southwest Ireland, where the extensions are shown to improve on the standard models. We generalize these models further by allowing some parameters of the models to be a function of some covariates. An application using data from Valentia observatory and Belmullet shows how to use this class of models to analyze the association between the rainfall pattern and the North Atlantic Oscillation (NAO) index.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"194 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X02st049oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X02st049oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

虽然Bartlett-Lewis模式已被广泛用于模拟空间中某一固定时间点的降雨过程,但该模式仍存在一些观测到的特征,如较长尺度依赖性,这些特征不能很好地拟合。本文研究了在风暴起源的聚类泊松过程中增加一层的扩展。我们还研究了风暴起源的帕累托到达时间,该时间已用于模拟网络流量数据。我们推导了多层聚类泊松过程的理论一阶和二阶性质,但通常我们必须依靠蒙特卡罗技术。这些模型与爱尔兰西南部瓦伦西亚天文台的每小时降雨量数据相匹配,在那里,扩展显示出对标准模型的改进。我们通过允许模型的某些参数是某些协变量的函数来进一步推广这些模型。一个使用Valentia天文台和Belmullet的数据的应用程序展示了如何使用这类模式来分析降雨模式与北大西洋涛动(NAO)指数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extensions of the Bartlett-Lewis model for rainfall processes
While the Bartlett-Lewis model has been widely used for modelling rainfall processes at a fixed point in space over time, there are observed features, such as longer-scale dependence, which are not well fitted by the model. In this paper, we study an extension where we put an extra layer in the clustered Poisson process of storm origins. We also investigate the Pareto inter-arrival time for the storm origins, which has been used to model web-traffic data. We derive the theoretical first and second-order properties of the multi-layer clustered Poisson processes, but generally we have to rely on Monte Carlo techniques. The models are fitted to hourly rainfall data from Valentia observatory in southwest Ireland, where the extensions are shown to improve on the standard models. We generalize these models further by allowing some parameters of the models to be a function of some covariates. An application using data from Valentia observatory and Belmullet shows how to use this class of models to analyze the association between the rainfall pattern and the North Atlantic Oscillation (NAO) index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1