人群自主导航的实时机器人友好通过运动规划

Shun Niijima, Y. Sasaki, H. Mizoguchi
{"title":"人群自主导航的实时机器人友好通过运动规划","authors":"Shun Niijima, Y. Sasaki, H. Mizoguchi","doi":"10.14738/tmlai.101.11616","DOIUrl":null,"url":null,"abstract":"This study proposes a real‐robot friendly passing motion planner to be used in crowds. The proposed method learns to pass pedestrians with smooth acceleration and deceleration by using passing motion learning. A key feature of the proposed method is that it is trained on a simple crowd simulation with both dynamic and stationary pedestrians. The learned passing behaviour can be used directly in autonomous navigation. Evaluations using the crowd simulations indicate that the proposed method outperforms the existing ones in terms of success rate, arrival time, and keeping a certain distance from the pedestrians. The proposed navigation framework is implemented on a mobile robot and demonstrated its successful navigation between pedestrians in a science museum.","PeriodicalId":119801,"journal":{"name":"Transactions on Machine Learning and Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Robot Friendly Passing Motion Planner for Autonomous Navigation in Crowds\",\"authors\":\"Shun Niijima, Y. Sasaki, H. Mizoguchi\",\"doi\":\"10.14738/tmlai.101.11616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a real‐robot friendly passing motion planner to be used in crowds. The proposed method learns to pass pedestrians with smooth acceleration and deceleration by using passing motion learning. A key feature of the proposed method is that it is trained on a simple crowd simulation with both dynamic and stationary pedestrians. The learned passing behaviour can be used directly in autonomous navigation. Evaluations using the crowd simulations indicate that the proposed method outperforms the existing ones in terms of success rate, arrival time, and keeping a certain distance from the pedestrians. The proposed navigation framework is implemented on a mobile robot and demonstrated its successful navigation between pedestrians in a science museum.\",\"PeriodicalId\":119801,\"journal\":{\"name\":\"Transactions on Machine Learning and Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Machine Learning and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14738/tmlai.101.11616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Machine Learning and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14738/tmlai.101.11616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种真正的机器人友好的在人群中使用的运动规划器。该方法通过通过动作学习来学习平稳加减速的行人。该方法的一个关键特点是,它是在一个简单的人群模拟中训练的,其中既有动态行人,也有静止行人。学习到的通过行为可以直接用于自主导航。人群仿真结果表明,该方法在成功率、到达时间、与行人保持一定距离等方面均优于现有方法。在一个移动机器人上实现了所提出的导航框架,并演示了其在科学博物馆行人之间的成功导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Robot Friendly Passing Motion Planner for Autonomous Navigation in Crowds
This study proposes a real‐robot friendly passing motion planner to be used in crowds. The proposed method learns to pass pedestrians with smooth acceleration and deceleration by using passing motion learning. A key feature of the proposed method is that it is trained on a simple crowd simulation with both dynamic and stationary pedestrians. The learned passing behaviour can be used directly in autonomous navigation. Evaluations using the crowd simulations indicate that the proposed method outperforms the existing ones in terms of success rate, arrival time, and keeping a certain distance from the pedestrians. The proposed navigation framework is implemented on a mobile robot and demonstrated its successful navigation between pedestrians in a science museum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Addressing Challenges Encountered by English Language Teachers in Imparting Communication Skills among Higher Secondary Students: A Critical Overview Singing Voice Melody Detection Inquiring About The Memetic Relationships People Have with Societal Collapse Natural Ventilation in a Semi-Confined Enclosure Heated by a Linear Heat Source NMC: A Fast and Secure ARX Cipher
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1