脑波:一种高能效脑电图监测系统——评估与权衡

B. Bruin, K. Singh, J. Huisken, H. Corporaal
{"title":"脑波:一种高能效脑电图监测系统——评估与权衡","authors":"B. Bruin, K. Singh, J. Huisken, H. Corporaal","doi":"10.1145/3370748.3406571","DOIUrl":null,"url":null,"abstract":"This paper presents the design and evaluation of an energy-efficient seizure detection system for emerging EEG-based monitoring applications, such as non-convulsive epileptic seizure detection and Freezing-of-Gait (FoG) detection. As part of the BrainWave system, a BrainWave processor for flexible and energy-efficient signal processing is designed. The key system design parameters, including algorithmic optimizations, feature offloading and near-threshold computing are evaluated in this work. The BrainWave processor is evaluated while executing a complex EEG-based epileptic seizure detection algorithm. In a 28-nm FDSOI technology, 325 μJ per classification at 0.9 V and 290 μJ at 0.5 V are achieved using an optimized software-only implementation. By leveraging a Coarse-Grained Reconfigurable Array (CGRA), 160 μJ and 135 μJ are obtained, respectively, while maintaining a high level of flexibility. Near-threshold computing combined with CGRA acceleration leads to an energy reduction of up to 59%, or 55% including idle-time overhead.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BrainWave: an energy-efficient EEG monitoring system - evaluation and trade-offs\",\"authors\":\"B. Bruin, K. Singh, J. Huisken, H. Corporaal\",\"doi\":\"10.1145/3370748.3406571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and evaluation of an energy-efficient seizure detection system for emerging EEG-based monitoring applications, such as non-convulsive epileptic seizure detection and Freezing-of-Gait (FoG) detection. As part of the BrainWave system, a BrainWave processor for flexible and energy-efficient signal processing is designed. The key system design parameters, including algorithmic optimizations, feature offloading and near-threshold computing are evaluated in this work. The BrainWave processor is evaluated while executing a complex EEG-based epileptic seizure detection algorithm. In a 28-nm FDSOI technology, 325 μJ per classification at 0.9 V and 290 μJ at 0.5 V are achieved using an optimized software-only implementation. By leveraging a Coarse-Grained Reconfigurable Array (CGRA), 160 μJ and 135 μJ are obtained, respectively, while maintaining a high level of flexibility. Near-threshold computing combined with CGRA acceleration leads to an energy reduction of up to 59%, or 55% including idle-time overhead.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3406571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于脑电图的节能癫痫检测系统的设计和评估,用于新兴的监测应用,如非惊厥性癫痫发作检测和步态冻结(FoG)检测。作为脑波系统的一部分,设计了一个灵活节能的脑波处理器。本文对关键的系统设计参数,包括算法优化、特征卸载和近阈值计算进行了评估。脑波处理器在执行复杂的基于脑电图的癫痫发作检测算法时进行评估。在28纳米FDSOI技术中,使用优化的纯软件实现,在0.9 V和0.5 V下,每个分类可实现325 μJ和290 μJ。通过利用粗粒度可重构阵列(CGRA),分别获得160 μJ和135 μJ,同时保持高水平的灵活性。近阈值计算与CGRA加速相结合,可减少高达59%的能量,如果包括空闲时间开销,则可减少55%的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BrainWave: an energy-efficient EEG monitoring system - evaluation and trade-offs
This paper presents the design and evaluation of an energy-efficient seizure detection system for emerging EEG-based monitoring applications, such as non-convulsive epileptic seizure detection and Freezing-of-Gait (FoG) detection. As part of the BrainWave system, a BrainWave processor for flexible and energy-efficient signal processing is designed. The key system design parameters, including algorithmic optimizations, feature offloading and near-threshold computing are evaluated in this work. The BrainWave processor is evaluated while executing a complex EEG-based epileptic seizure detection algorithm. In a 28-nm FDSOI technology, 325 μJ per classification at 0.9 V and 290 μJ at 0.5 V are achieved using an optimized software-only implementation. By leveraging a Coarse-Grained Reconfigurable Array (CGRA), 160 μJ and 135 μJ are obtained, respectively, while maintaining a high level of flexibility. Near-threshold computing combined with CGRA acceleration leads to an energy reduction of up to 59%, or 55% including idle-time overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1