{"title":"基于混合学习算法的径向基函数神经网络动态系统辨识","authors":"Jun Yu Li, Feng Zhao","doi":"10.1109/ISSCAA.2006.1627562","DOIUrl":null,"url":null,"abstract":"The paper demonstrates that radial basis function network (RBFN) with adaptive centers and width can be used effectively for identification of nonlinear dynamic system. The proposed RBFN is trained by hybrid learning algorithm, which uses conjugate gradient optimization algorithm to obtain the center and width of each radial basis function and the least squares method to obtain the weights. To avoid capturing a local optimum, regularization error energy function is used and the centers of basis functions are initialized using a fuzzy C-means clustering method. Simulation results reveal that the identification schemes based on RBFN gives considerably better performance and show faster learning in comparison to previous methods","PeriodicalId":275436,"journal":{"name":"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Identification of dynamical systems using radial basis function neural networks with hybrid learning algorithm\",\"authors\":\"Jun Yu Li, Feng Zhao\",\"doi\":\"10.1109/ISSCAA.2006.1627562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper demonstrates that radial basis function network (RBFN) with adaptive centers and width can be used effectively for identification of nonlinear dynamic system. The proposed RBFN is trained by hybrid learning algorithm, which uses conjugate gradient optimization algorithm to obtain the center and width of each radial basis function and the least squares method to obtain the weights. To avoid capturing a local optimum, regularization error energy function is used and the centers of basis functions are initialized using a fuzzy C-means clustering method. Simulation results reveal that the identification schemes based on RBFN gives considerably better performance and show faster learning in comparison to previous methods\",\"PeriodicalId\":275436,\"journal\":{\"name\":\"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCAA.2006.1627562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCAA.2006.1627562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of dynamical systems using radial basis function neural networks with hybrid learning algorithm
The paper demonstrates that radial basis function network (RBFN) with adaptive centers and width can be used effectively for identification of nonlinear dynamic system. The proposed RBFN is trained by hybrid learning algorithm, which uses conjugate gradient optimization algorithm to obtain the center and width of each radial basis function and the least squares method to obtain the weights. To avoid capturing a local optimum, regularization error energy function is used and the centers of basis functions are initialized using a fuzzy C-means clustering method. Simulation results reveal that the identification schemes based on RBFN gives considerably better performance and show faster learning in comparison to previous methods