基于GCV平滑样条的超级计算机曲面拟合

Alan Williams, K. Burrage
{"title":"基于GCV平滑样条的超级计算机曲面拟合","authors":"Alan Williams, K. Burrage","doi":"10.1145/224170.224192","DOIUrl":null,"url":null,"abstract":"The task of fitting smoothing spline surfaces to meteorological data such as temperature or rainfall observations is computationally intensive. The Generalised Cross Validation (GCV) smoothing algorithm is O(n³) computationally, and memory requirements are 0(n²). Fitting a spline to a moderately sized data set of, for example. 1080 observations and calculating an output surface grid of dimension 220 × 220 involves approximately 5 billion floating point operations, and takes approximately 19 minutes of execution time on a Sun SPARC2 workstation. Since fitting a surface to data collected from the whole of Australia could conceivably involve data sets with approximately 10000 points, and because it is desirable to be able to fit surfaces of at least 1000 data points in 1 to 5 seconds for use in interactive visualisations, it is crucial to be able to take advantage of supercomputing resources. This paper describes the adaptation of the surface fitting program to different supercomputing platforms, and the results achieved.","PeriodicalId":269909,"journal":{"name":"Proceedings of the IEEE/ACM SC95 Conference","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Surface Fitting Using GCV Smoothing Splines on Supercomputers\",\"authors\":\"Alan Williams, K. Burrage\",\"doi\":\"10.1145/224170.224192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of fitting smoothing spline surfaces to meteorological data such as temperature or rainfall observations is computationally intensive. The Generalised Cross Validation (GCV) smoothing algorithm is O(n³) computationally, and memory requirements are 0(n²). Fitting a spline to a moderately sized data set of, for example. 1080 observations and calculating an output surface grid of dimension 220 × 220 involves approximately 5 billion floating point operations, and takes approximately 19 minutes of execution time on a Sun SPARC2 workstation. Since fitting a surface to data collected from the whole of Australia could conceivably involve data sets with approximately 10000 points, and because it is desirable to be able to fit surfaces of at least 1000 data points in 1 to 5 seconds for use in interactive visualisations, it is crucial to be able to take advantage of supercomputing resources. This paper describes the adaptation of the surface fitting program to different supercomputing platforms, and the results achieved.\",\"PeriodicalId\":269909,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/224170.224192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM SC95 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/224170.224192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

将光滑样条曲面拟合到气象数据(如温度或降雨观测)的任务是计算密集型的。广义交叉验证(GCV)平滑算法计算量为O(n³),内存要求为0(n²)。将样条曲线拟合到中等大小的数据集,例如。1080次观测和计算一个220 × 220维的输出曲面网格涉及大约50亿次浮点运算,在Sun SPARC2工作站上大约需要19分钟的执行时间。由于拟合从整个澳大利亚收集的数据的表面可能涉及大约10000个点的数据集,并且因为能够在1到5秒内拟合至少1000个数据点的表面以用于交互式可视化,因此能够利用超级计算资源是至关重要的。本文介绍了曲面拟合程序在不同的超级计算平台上的适应性,以及所取得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface Fitting Using GCV Smoothing Splines on Supercomputers
The task of fitting smoothing spline surfaces to meteorological data such as temperature or rainfall observations is computationally intensive. The Generalised Cross Validation (GCV) smoothing algorithm is O(n³) computationally, and memory requirements are 0(n²). Fitting a spline to a moderately sized data set of, for example. 1080 observations and calculating an output surface grid of dimension 220 × 220 involves approximately 5 billion floating point operations, and takes approximately 19 minutes of execution time on a Sun SPARC2 workstation. Since fitting a surface to data collected from the whole of Australia could conceivably involve data sets with approximately 10000 points, and because it is desirable to be able to fit surfaces of at least 1000 data points in 1 to 5 seconds for use in interactive visualisations, it is crucial to be able to take advantage of supercomputing resources. This paper describes the adaptation of the surface fitting program to different supercomputing platforms, and the results achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Web Interface to Parallel Program Source Code Archetypes Parallel Implementations of the Power System Transient Stability Problem on Clusters of Workstations The Synergetic Effect of Compiler, Architecture, and Manual Optimizations on the Performance of CFD on Multiprocessors SCIRun: A Scientific Programming Environment for Computational Steering Surface Fitting Using GCV Smoothing Splines on Supercomputers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1