{"title":"使用LASSO和VSURF进行特征选择,以模拟熔模铸造的机械性能","authors":"J. Virdi, W. Peng, A. Sata","doi":"10.1109/ICCIDS.2019.8862141","DOIUrl":null,"url":null,"abstract":"The service life of investment casting products is measured through its mechanical properties like ultimate tensile strength, yield strength, percentage elongation, hardness etc. These mechanical properties are procured through destructive testing which is time consuming and leads to material wastage. In the past, some machine learning models are utilized to predict the mechanical properties using the chemical composition and process parameters of the investment casting process. This industrial data contains a large number of input variables, which are complex to model and results in low prediction accuracy. In this proposed paper, two feature selection technique named least absolute shrinkage and selection operator (LASSO) and variable selection using random forests (VSURF) are implemented to select significant features from a total of 25 independent variables which are utilized for predicting the mechanical properties for the investment casting process. The efficacy of selected features is also evaluated by several machine learning models, including random forest (RF), K-nearest neighbor (KNN) algorithm and extreme gradient boosting (XGBOOST). The results show that the VSURF can extract a smaller subset of critical variables compared to LASSO, which helps to enhance the prediction accuracy and interpretation of the machine learning models; XGBOOST has the best capability to predict mechanical properties with the highest accuracy.","PeriodicalId":196915,"journal":{"name":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Feature selection with LASSO and VSURF to model mechanical properties for investment casting\",\"authors\":\"J. Virdi, W. Peng, A. Sata\",\"doi\":\"10.1109/ICCIDS.2019.8862141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The service life of investment casting products is measured through its mechanical properties like ultimate tensile strength, yield strength, percentage elongation, hardness etc. These mechanical properties are procured through destructive testing which is time consuming and leads to material wastage. In the past, some machine learning models are utilized to predict the mechanical properties using the chemical composition and process parameters of the investment casting process. This industrial data contains a large number of input variables, which are complex to model and results in low prediction accuracy. In this proposed paper, two feature selection technique named least absolute shrinkage and selection operator (LASSO) and variable selection using random forests (VSURF) are implemented to select significant features from a total of 25 independent variables which are utilized for predicting the mechanical properties for the investment casting process. The efficacy of selected features is also evaluated by several machine learning models, including random forest (RF), K-nearest neighbor (KNN) algorithm and extreme gradient boosting (XGBOOST). The results show that the VSURF can extract a smaller subset of critical variables compared to LASSO, which helps to enhance the prediction accuracy and interpretation of the machine learning models; XGBOOST has the best capability to predict mechanical properties with the highest accuracy.\",\"PeriodicalId\":196915,\"journal\":{\"name\":\"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIDS.2019.8862141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIDS.2019.8862141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
熔模铸造产品的使用寿命是通过其极限抗拉强度、屈服强度、伸长率、硬度等力学性能来衡量的。这些机械性能是通过破坏性测试获得的,这种测试既耗时又会导致材料浪费。在过去,一些机器学习模型是利用熔模铸造过程的化学成分和工艺参数来预测力学性能的。该工业数据包含大量的输入变量,建模复杂,导致预测精度低。本文采用最小绝对收缩和选择算子(LASSO)和随机森林变量选择(VSURF)两种特征选择技术,从25个自变量中选择重要特征,用于预测熔模铸造过程的力学性能。所选特征的有效性也通过几种机器学习模型进行评估,包括随机森林(RF), k -最近邻(KNN)算法和极端梯度增强(XGBOOST)。结果表明,与LASSO相比,VSURF可以提取更小的关键变量子集,这有助于提高机器学习模型的预测精度和解释;XGBOOST具有预测机械性能的最佳能力,精度最高。
Feature selection with LASSO and VSURF to model mechanical properties for investment casting
The service life of investment casting products is measured through its mechanical properties like ultimate tensile strength, yield strength, percentage elongation, hardness etc. These mechanical properties are procured through destructive testing which is time consuming and leads to material wastage. In the past, some machine learning models are utilized to predict the mechanical properties using the chemical composition and process parameters of the investment casting process. This industrial data contains a large number of input variables, which are complex to model and results in low prediction accuracy. In this proposed paper, two feature selection technique named least absolute shrinkage and selection operator (LASSO) and variable selection using random forests (VSURF) are implemented to select significant features from a total of 25 independent variables which are utilized for predicting the mechanical properties for the investment casting process. The efficacy of selected features is also evaluated by several machine learning models, including random forest (RF), K-nearest neighbor (KNN) algorithm and extreme gradient boosting (XGBOOST). The results show that the VSURF can extract a smaller subset of critical variables compared to LASSO, which helps to enhance the prediction accuracy and interpretation of the machine learning models; XGBOOST has the best capability to predict mechanical properties with the highest accuracy.