Zhiqiang Zuo, Rong Gu, Xi Jiang, Zhaokang Wang, Yihua Huang, Linzhang Wang, Xuandong Li
{"title":"BigSpa:云端高效的过程间静态分析引擎","authors":"Zhiqiang Zuo, Rong Gu, Xi Jiang, Zhaokang Wang, Yihua Huang, Linzhang Wang, Xuandong Li","doi":"10.1109/IPDPS.2019.00086","DOIUrl":null,"url":null,"abstract":"Static program analysis is widely used in various application areas to solve many practical problems. Although researchers have made significant achievements in static analysis, it is still too challenging to perform sophisticated interprocedural analysis on large-scale modern software. The underlying reason is that interprocedural analysis for large-scale modern software is highly computation-and memory-intensive, leading to poor scalability. We aim to tackle the scalability problem by proposing a novel big data solution for sophisticated static analysis. Specifically, we propose a data-parallel algorithm and a join-process-filter computation model for the CFL-reachability based interprocedural analysis and develop an efficient distributed static analysis engine in the cloud, called BigSpa. Our experiments validated that BigSpa running on a cluster scales greatly to perform precise interprocedural analyses on millions of lines of code, and runs an order of magnitude or more faster than the existing state-of-the-art analysis tools.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"BigSpa: An Efficient Interprocedural Static Analysis Engine in the Cloud\",\"authors\":\"Zhiqiang Zuo, Rong Gu, Xi Jiang, Zhaokang Wang, Yihua Huang, Linzhang Wang, Xuandong Li\",\"doi\":\"10.1109/IPDPS.2019.00086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static program analysis is widely used in various application areas to solve many practical problems. Although researchers have made significant achievements in static analysis, it is still too challenging to perform sophisticated interprocedural analysis on large-scale modern software. The underlying reason is that interprocedural analysis for large-scale modern software is highly computation-and memory-intensive, leading to poor scalability. We aim to tackle the scalability problem by proposing a novel big data solution for sophisticated static analysis. Specifically, we propose a data-parallel algorithm and a join-process-filter computation model for the CFL-reachability based interprocedural analysis and develop an efficient distributed static analysis engine in the cloud, called BigSpa. Our experiments validated that BigSpa running on a cluster scales greatly to perform precise interprocedural analyses on millions of lines of code, and runs an order of magnitude or more faster than the existing state-of-the-art analysis tools.\",\"PeriodicalId\":403406,\"journal\":{\"name\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2019.00086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BigSpa: An Efficient Interprocedural Static Analysis Engine in the Cloud
Static program analysis is widely used in various application areas to solve many practical problems. Although researchers have made significant achievements in static analysis, it is still too challenging to perform sophisticated interprocedural analysis on large-scale modern software. The underlying reason is that interprocedural analysis for large-scale modern software is highly computation-and memory-intensive, leading to poor scalability. We aim to tackle the scalability problem by proposing a novel big data solution for sophisticated static analysis. Specifically, we propose a data-parallel algorithm and a join-process-filter computation model for the CFL-reachability based interprocedural analysis and develop an efficient distributed static analysis engine in the cloud, called BigSpa. Our experiments validated that BigSpa running on a cluster scales greatly to perform precise interprocedural analyses on millions of lines of code, and runs an order of magnitude or more faster than the existing state-of-the-art analysis tools.