基于粒子群算法的广义回归神经网络需求预测模型

Juan Zhou, K. Yang
{"title":"基于粒子群算法的广义回归神经网络需求预测模型","authors":"Juan Zhou, K. Yang","doi":"10.1109/KAM.2010.5646238","DOIUrl":null,"url":null,"abstract":"There is a complicated non-linear relationship between the factors and water demand. General regression neural network (GRNN) was adopted to model the non-linear relationship in the study. The prediction performance of GRNN can vary considerably depending on smoothing parameter. The optimal smoothing parameter is usually determined empirically based on trial-and-error. Particle swarm optimization (PSO) algorithm, to improve GRNN prediction performance, was employed to optimize GRNN and determine an optimal value of smoothing parameter. At the same time, linear inertia weight and chaos variation operator are presented to improve traditional PSO algorithm searching capacity. GRNN forecasting model based on PSO algorithm was used to water demand in Yellow River Basin. The result shows that, compared with Back propagation based on Genetic algorithm model and GRNN based on Genetic algorithm prediction model, the new prediction model is reasonable.","PeriodicalId":160788,"journal":{"name":"2010 Third International Symposium on Knowledge Acquisition and Modeling","volume":"248 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"General regression neural network forecasting model based on PSO algorithm in water demand\",\"authors\":\"Juan Zhou, K. Yang\",\"doi\":\"10.1109/KAM.2010.5646238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a complicated non-linear relationship between the factors and water demand. General regression neural network (GRNN) was adopted to model the non-linear relationship in the study. The prediction performance of GRNN can vary considerably depending on smoothing parameter. The optimal smoothing parameter is usually determined empirically based on trial-and-error. Particle swarm optimization (PSO) algorithm, to improve GRNN prediction performance, was employed to optimize GRNN and determine an optimal value of smoothing parameter. At the same time, linear inertia weight and chaos variation operator are presented to improve traditional PSO algorithm searching capacity. GRNN forecasting model based on PSO algorithm was used to water demand in Yellow River Basin. The result shows that, compared with Back propagation based on Genetic algorithm model and GRNN based on Genetic algorithm prediction model, the new prediction model is reasonable.\",\"PeriodicalId\":160788,\"journal\":{\"name\":\"2010 Third International Symposium on Knowledge Acquisition and Modeling\",\"volume\":\"248 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Symposium on Knowledge Acquisition and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KAM.2010.5646238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Symposium on Knowledge Acquisition and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAM.2010.5646238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

各因子与需水量之间存在复杂的非线性关系。研究中采用广义回归神经网络(GRNN)对非线性关系进行建模。随着平滑参数的不同,GRNN的预测性能会发生很大的变化。最优平滑参数通常是基于试错经验确定的。为了提高GRNN的预测性能,采用粒子群优化算法对GRNN进行优化,确定最优平滑参数值。同时,提出了线性惯性权值和混沌变分算子,提高了传统粒子群算法的搜索能力。将基于粒子群算法的GRNN预测模型应用于黄河流域需水量预测。结果表明,与基于遗传算法的反向传播模型和基于遗传算法的GRNN预测模型相比,新预测模型是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
General regression neural network forecasting model based on PSO algorithm in water demand
There is a complicated non-linear relationship between the factors and water demand. General regression neural network (GRNN) was adopted to model the non-linear relationship in the study. The prediction performance of GRNN can vary considerably depending on smoothing parameter. The optimal smoothing parameter is usually determined empirically based on trial-and-error. Particle swarm optimization (PSO) algorithm, to improve GRNN prediction performance, was employed to optimize GRNN and determine an optimal value of smoothing parameter. At the same time, linear inertia weight and chaos variation operator are presented to improve traditional PSO algorithm searching capacity. GRNN forecasting model based on PSO algorithm was used to water demand in Yellow River Basin. The result shows that, compared with Back propagation based on Genetic algorithm model and GRNN based on Genetic algorithm prediction model, the new prediction model is reasonable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network resources construction based on virtualization Fuzzy variable time series based on fuzzy membership function and econometrics A novel VLSI architecture of 8×8 integer DCT based on H.264/AVC FRext The new way of configuration management of network devices under mutable environment Staff assessment and promotion models based on social assessment matrix inspired by social network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1