{"title":"基于相关聚类的遥感图像超像素分割","authors":"Giuseppe Masi, R. Gaetano, G. Poggi, G. Scarpa","doi":"10.1109/IGARSS.2015.7325944","DOIUrl":null,"url":null,"abstract":"In this paper a new object-oriented segmentation method for high-resolution remote sensing images is proposed. To limit computational complexity, a preliminary superpixel representation of the image is obtained by means of a suitable watershed transform. Then, a region adjacency graph is associated with the superpixels, with edge weights accounting for region similarity/dissimilarity. The final segmentation is then obtained by means of a graph-cutting approach, following a correlation clustering formulation. The optimal cut can be obtained by solving a Integer Linear Programming (ILP) problem, whose complexity, however, grows rapidly with the image size. Much faster near-optimal solutions are obtained, here, with a greedy solution. Experiments on a real-world high-resolution remote sensing image prove the potential of the approach.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Superpixel-based segmentation of remote sensing images through correlation clustering\",\"authors\":\"Giuseppe Masi, R. Gaetano, G. Poggi, G. Scarpa\",\"doi\":\"10.1109/IGARSS.2015.7325944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new object-oriented segmentation method for high-resolution remote sensing images is proposed. To limit computational complexity, a preliminary superpixel representation of the image is obtained by means of a suitable watershed transform. Then, a region adjacency graph is associated with the superpixels, with edge weights accounting for region similarity/dissimilarity. The final segmentation is then obtained by means of a graph-cutting approach, following a correlation clustering formulation. The optimal cut can be obtained by solving a Integer Linear Programming (ILP) problem, whose complexity, however, grows rapidly with the image size. Much faster near-optimal solutions are obtained, here, with a greedy solution. Experiments on a real-world high-resolution remote sensing image prove the potential of the approach.\",\"PeriodicalId\":125717,\"journal\":{\"name\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2015.7325944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7325944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Superpixel-based segmentation of remote sensing images through correlation clustering
In this paper a new object-oriented segmentation method for high-resolution remote sensing images is proposed. To limit computational complexity, a preliminary superpixel representation of the image is obtained by means of a suitable watershed transform. Then, a region adjacency graph is associated with the superpixels, with edge weights accounting for region similarity/dissimilarity. The final segmentation is then obtained by means of a graph-cutting approach, following a correlation clustering formulation. The optimal cut can be obtained by solving a Integer Linear Programming (ILP) problem, whose complexity, however, grows rapidly with the image size. Much faster near-optimal solutions are obtained, here, with a greedy solution. Experiments on a real-world high-resolution remote sensing image prove the potential of the approach.