结合相似性度量和支持向量的单镜头人物再识别

Anderson Luis Cavalcanti Sales, R. H. Vareto, W. R. Schwartz, Guillermo Cámara Chávez
{"title":"结合相似性度量和支持向量的单镜头人物再识别","authors":"Anderson Luis Cavalcanti Sales, R. H. Vareto, W. R. Schwartz, Guillermo Cámara Chávez","doi":"10.1109/SIBGRAPI.2018.00039","DOIUrl":null,"url":null,"abstract":"Person Re-Identification is all about determining a person's entire course as s/he walks around camera-equipped zones. More precisely, person Re-ID is the problem of matching human identities captured from non-overlapping surveillance cameras. In this work, we propose an approach that learns a new low-dimensional metric space in an attempt to cut down multi-camera matching errors. We represent the training and test samples by concatenating handcrafted features. Then, the method performs a two-step ranking using elementary distance metrics and followed by an ensemble of weighted binary classifiers. We validate our approach on CUHK01 and PRID450s datasets, providing only a sample per class for probe and only a sample for gallery (single-shot). According to the experiments, our method achieves CMC Rank-1 results up to 61.1 and 75.4, following leading literature protocols, for CUHK01 and PRID450s, respectively.","PeriodicalId":208985,"journal":{"name":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single-Shot Person Re-Identification Combining Similarity Metrics and Support Vectors\",\"authors\":\"Anderson Luis Cavalcanti Sales, R. H. Vareto, W. R. Schwartz, Guillermo Cámara Chávez\",\"doi\":\"10.1109/SIBGRAPI.2018.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Person Re-Identification is all about determining a person's entire course as s/he walks around camera-equipped zones. More precisely, person Re-ID is the problem of matching human identities captured from non-overlapping surveillance cameras. In this work, we propose an approach that learns a new low-dimensional metric space in an attempt to cut down multi-camera matching errors. We represent the training and test samples by concatenating handcrafted features. Then, the method performs a two-step ranking using elementary distance metrics and followed by an ensemble of weighted binary classifiers. We validate our approach on CUHK01 and PRID450s datasets, providing only a sample per class for probe and only a sample for gallery (single-shot). According to the experiments, our method achieves CMC Rank-1 results up to 61.1 and 75.4, following leading literature protocols, for CUHK01 and PRID450s, respectively.\",\"PeriodicalId\":208985,\"journal\":{\"name\":\"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI.2018.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2018.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人员重新识别是关于确定一个人在装有摄像头的区域走动时的整个过程。更准确地说,人的重新识别是匹配从不重叠的监控摄像头捕获的人的身份的问题。在这项工作中,我们提出了一种学习新的低维度量空间的方法,试图减少多相机匹配误差。我们通过连接手工制作的特征来表示训练和测试样本。然后,该方法使用基本距离度量执行两步排序,然后是加权二元分类器的集合。我们在CUHK01和prid450数据集上验证了我们的方法,每个类只提供一个样本用于探针,只有一个样本用于画廊(单次拍摄)。根据实验,我们的方法对CUHK01和prid450的CMC Rank-1结果分别达到61.1和75.4,遵循主流文献方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-Shot Person Re-Identification Combining Similarity Metrics and Support Vectors
Person Re-Identification is all about determining a person's entire course as s/he walks around camera-equipped zones. More precisely, person Re-ID is the problem of matching human identities captured from non-overlapping surveillance cameras. In this work, we propose an approach that learns a new low-dimensional metric space in an attempt to cut down multi-camera matching errors. We represent the training and test samples by concatenating handcrafted features. Then, the method performs a two-step ranking using elementary distance metrics and followed by an ensemble of weighted binary classifiers. We validate our approach on CUHK01 and PRID450s datasets, providing only a sample per class for probe and only a sample for gallery (single-shot). According to the experiments, our method achieves CMC Rank-1 results up to 61.1 and 75.4, following leading literature protocols, for CUHK01 and PRID450s, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Spectral Filtering for Network Simplification A Photon Tracing Approach to Solve Inverse Rendering Problems Asynchronous Stroboscopic Structured Lighting Image Processing Using Low-Cost Cameras Scene Conversion for Physically-Based Renderers Multicenter Imaging Studies: Automated Approach to Evaluating Data Variability and the Role of Outliers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1