FedGR:安全联邦学习的无损混淆方法

Wenjing Qin, Li Yang, Jianfeng Ma
{"title":"FedGR:安全联邦学习的无损混淆方法","authors":"Wenjing Qin, Li Yang, Jianfeng Ma","doi":"10.1109/GLOBECOM46510.2021.9686029","DOIUrl":null,"url":null,"abstract":"Federated learning is a promising new technology in the field of artificial intelligence. However, the unprotected model gradient parameters in federated learning may reveal sensitive participants information. To address this problem, we present a secure federated learning framework called FedGR. We use Paillier homomorphic encryption to design a new gradient security replacement algorithm, which eliminates the connections between gradient parameters and user sensitive data. In addition, we revisit the previous work by Aono and Hayashi(IEEE TIFS 2017) and show that, with their method, the user's local computing burden is too heavy. We then proved FedGR has the following characteristics to solve this problem: 1) The system does not leak any information to the server. 2) Compared with that of ordinary deep learning systems, the accuracy of federated training results yielded by our system remains unchanged. 3)The proposed approach greatly reduces the user's local computing overhead.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FedGR: A Lossless-Obfuscation Approach for Secure Federated Learning\",\"authors\":\"Wenjing Qin, Li Yang, Jianfeng Ma\",\"doi\":\"10.1109/GLOBECOM46510.2021.9686029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning is a promising new technology in the field of artificial intelligence. However, the unprotected model gradient parameters in federated learning may reveal sensitive participants information. To address this problem, we present a secure federated learning framework called FedGR. We use Paillier homomorphic encryption to design a new gradient security replacement algorithm, which eliminates the connections between gradient parameters and user sensitive data. In addition, we revisit the previous work by Aono and Hayashi(IEEE TIFS 2017) and show that, with their method, the user's local computing burden is too heavy. We then proved FedGR has the following characteristics to solve this problem: 1) The system does not leak any information to the server. 2) Compared with that of ordinary deep learning systems, the accuracy of federated training results yielded by our system remains unchanged. 3)The proposed approach greatly reduces the user's local computing overhead.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9686029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9686029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

联邦学习是人工智能领域一项很有前途的新技术。然而,在联邦学习中,不受保护的模型梯度参数可能会泄露敏感的参与者信息。为了解决这个问题,我们提出了一个安全的联邦学习框架,称为FedGR。利用Paillier同态加密设计了一种新的梯度安全替换算法,消除了梯度参数与用户敏感数据之间的联系。此外,我们回顾了Aono和Hayashi之前的工作(IEEE TIFS 2017),并表明,使用他们的方法,用户的本地计算负担太重。然后我们证明FedGR具有以下特征来解决这个问题:1)系统不会向服务器泄露任何信息。2)与普通深度学习系统相比,我们系统产生的联邦训练结果的准确性保持不变。3)该方法大大降低了用户的本地计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FedGR: A Lossless-Obfuscation Approach for Secure Federated Learning
Federated learning is a promising new technology in the field of artificial intelligence. However, the unprotected model gradient parameters in federated learning may reveal sensitive participants information. To address this problem, we present a secure federated learning framework called FedGR. We use Paillier homomorphic encryption to design a new gradient security replacement algorithm, which eliminates the connections between gradient parameters and user sensitive data. In addition, we revisit the previous work by Aono and Hayashi(IEEE TIFS 2017) and show that, with their method, the user's local computing burden is too heavy. We then proved FedGR has the following characteristics to solve this problem: 1) The system does not leak any information to the server. 2) Compared with that of ordinary deep learning systems, the accuracy of federated training results yielded by our system remains unchanged. 3)The proposed approach greatly reduces the user's local computing overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Blockchain-based Energy Trading Scheme for Dynamic Charging of Electric Vehicles Algebraic Design of a Class of Rate 1/3 Quasi-Cyclic LDPC Codes A Fast and Scalable Resource Allocation Scheme for End-to-End Network Slices Modelling of Multi-Tier Handover in LiFi Networks Enabling Efficient Scheduling Policy in Intelligent Reflecting Surface Aided Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1