基于注视行为和头向的虚拟现实内隐识别

Jonathan Liebers, Patrick Horn, Christian Burschik, Uwe Gruenefeld, Stefan Schneegass
{"title":"基于注视行为和头向的虚拟现实内隐识别","authors":"Jonathan Liebers, Patrick Horn, Christian Burschik, Uwe Gruenefeld, Stefan Schneegass","doi":"10.1145/3489849.3489880","DOIUrl":null,"url":null,"abstract":"Identifying users of a Virtual Reality (VR) headset provides designers of VR content with the opportunity to adapt the user interface, set user-specific preferences, or adjust the level of difficulty either for games or training applications. While most identification methods currently rely on explicit input, implicit user identification is less disruptive and does not impact the immersion of the users. In this work, we introduce a biometric identification system that employs the user’s gaze behavior as a unique, individual characteristic. In particular, we focus on the user’s gaze behavior and head orientation while following a moving stimulus. We verify our approach in a user study. A hybrid post-hoc analysis results in an identification accuracy of up to 75 % for an explainable machine learning algorithm and up to 100 % for a deep learning approach. We conclude with discussing application scenarios in which our approach can be used to implicitly identify users.","PeriodicalId":345527,"journal":{"name":"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Using Gaze Behavior and Head Orientation for Implicit Identification in Virtual Reality\",\"authors\":\"Jonathan Liebers, Patrick Horn, Christian Burschik, Uwe Gruenefeld, Stefan Schneegass\",\"doi\":\"10.1145/3489849.3489880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying users of a Virtual Reality (VR) headset provides designers of VR content with the opportunity to adapt the user interface, set user-specific preferences, or adjust the level of difficulty either for games or training applications. While most identification methods currently rely on explicit input, implicit user identification is less disruptive and does not impact the immersion of the users. In this work, we introduce a biometric identification system that employs the user’s gaze behavior as a unique, individual characteristic. In particular, we focus on the user’s gaze behavior and head orientation while following a moving stimulus. We verify our approach in a user study. A hybrid post-hoc analysis results in an identification accuracy of up to 75 % for an explainable machine learning algorithm and up to 100 % for a deep learning approach. We conclude with discussing application scenarios in which our approach can be used to implicitly identify users.\",\"PeriodicalId\":345527,\"journal\":{\"name\":\"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489849.3489880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489849.3489880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

识别虚拟现实(VR)耳机的用户为VR内容的设计师提供了调整用户界面、设置用户特定偏好或调整游戏或培训应用程序难度的机会。虽然目前大多数识别方法依赖于显式输入,但隐式用户识别的破坏性较小,不会影响用户的沉浸感。在这项工作中,我们引入了一种生物识别系统,该系统将用户的凝视行为作为一种独特的个体特征。特别是,我们关注用户的注视行为和头部方向,当跟随一个移动的刺激。我们在用户研究中验证了我们的方法。对于可解释的机器学习算法,混合事后分析的识别准确率高达75%,对于深度学习方法,识别准确率高达100%。最后,我们讨论了可以使用我们的方法来隐式标识用户的应用程序场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Gaze Behavior and Head Orientation for Implicit Identification in Virtual Reality
Identifying users of a Virtual Reality (VR) headset provides designers of VR content with the opportunity to adapt the user interface, set user-specific preferences, or adjust the level of difficulty either for games or training applications. While most identification methods currently rely on explicit input, implicit user identification is less disruptive and does not impact the immersion of the users. In this work, we introduce a biometric identification system that employs the user’s gaze behavior as a unique, individual characteristic. In particular, we focus on the user’s gaze behavior and head orientation while following a moving stimulus. We verify our approach in a user study. A hybrid post-hoc analysis results in an identification accuracy of up to 75 % for an explainable machine learning algorithm and up to 100 % for a deep learning approach. We conclude with discussing application scenarios in which our approach can be used to implicitly identify users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing a Crisis in Virtual Reality - Tackling a Wildfire A Perceptual Evaluation of the Ground Inclination with a Simple VR Walking Platform GazeMOOC: A Gaze Data Driven Visual Analytics System for MOOC with XR Content Fluid3DGuides: A Technique for Structured 3D Drawing in VR Analysis of Detection Thresholds for Hand Redirection during Mid-Air Interactions in Virtual Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1