{"title":"使用仿射抽象时钟设计安全关键型Java 1级应用程序","authors":"A. Bouakaz, J. Talpin","doi":"10.1145/2463596.2463600","DOIUrl":null,"url":null,"abstract":"Safety-critical Java (SCJ) is designed to enable development of applications that are amenable to certification under safety-critical standards. However, its shared-memory concurrency model causes several problems such as data races, deadlocks, and priority inversion. We propose therefore a dataflow design model of SCJ applications in which periodic and aperiodic tasks communicate only through lock-free channels. We provide the necessary tools that compute scheduling parameters of tasks (i.e. periods, phases, priorities, etc) so that uniprocessor/multiprocessor preemptive fixed-priority schedulability is ensured and the throughput is maximized. Furthermore, the resulted schedule together with the computed channel sizes ensure underflow/overflow-free communications. The scheduling approach consists in constructing an abstract affine schedule of the dataflow graph and then concretizing it.","PeriodicalId":344517,"journal":{"name":"M-SCOPES","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Design of safety-critical Java level 1 applications using affine abstract clocks\",\"authors\":\"A. Bouakaz, J. Talpin\",\"doi\":\"10.1145/2463596.2463600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safety-critical Java (SCJ) is designed to enable development of applications that are amenable to certification under safety-critical standards. However, its shared-memory concurrency model causes several problems such as data races, deadlocks, and priority inversion. We propose therefore a dataflow design model of SCJ applications in which periodic and aperiodic tasks communicate only through lock-free channels. We provide the necessary tools that compute scheduling parameters of tasks (i.e. periods, phases, priorities, etc) so that uniprocessor/multiprocessor preemptive fixed-priority schedulability is ensured and the throughput is maximized. Furthermore, the resulted schedule together with the computed channel sizes ensure underflow/overflow-free communications. The scheduling approach consists in constructing an abstract affine schedule of the dataflow graph and then concretizing it.\",\"PeriodicalId\":344517,\"journal\":{\"name\":\"M-SCOPES\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"M-SCOPES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463596.2463600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"M-SCOPES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463596.2463600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of safety-critical Java level 1 applications using affine abstract clocks
Safety-critical Java (SCJ) is designed to enable development of applications that are amenable to certification under safety-critical standards. However, its shared-memory concurrency model causes several problems such as data races, deadlocks, and priority inversion. We propose therefore a dataflow design model of SCJ applications in which periodic and aperiodic tasks communicate only through lock-free channels. We provide the necessary tools that compute scheduling parameters of tasks (i.e. periods, phases, priorities, etc) so that uniprocessor/multiprocessor preemptive fixed-priority schedulability is ensured and the throughput is maximized. Furthermore, the resulted schedule together with the computed channel sizes ensure underflow/overflow-free communications. The scheduling approach consists in constructing an abstract affine schedule of the dataflow graph and then concretizing it.