比较基线和干预阶段

C. Auerbach
{"title":"比较基线和干预阶段","authors":"C. Auerbach","doi":"10.1093/oso/9780197582756.003.0005","DOIUrl":null,"url":null,"abstract":"In this chapter readers will learn about methodological issues to consider in analyzing the success of the intervention and how to conduct visual analysis. The chapter begins with a discussion of descriptive statistics that can aid the visual analysis of findings by summarizing patterns of data across phases. An example data set is used to illustrate the use of specific graphs, including box plots, standard deviation band graphs, and line charts showing the mean, median, and trimmed mean that can used to compare any two phases. SSD for R provides three standard methods for computing effect size, which are discussed in detail. Additionally, four methods of evaluating effect size using non-overlap methods are examined. The use of the goal line is discussed. The chapter concludes with a discussion of autocorrelation in the intervention phase and how to consider dealing with this issue.","PeriodicalId":197276,"journal":{"name":"SSD for R","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Baseline and Intervention Phases\",\"authors\":\"C. Auerbach\",\"doi\":\"10.1093/oso/9780197582756.003.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter readers will learn about methodological issues to consider in analyzing the success of the intervention and how to conduct visual analysis. The chapter begins with a discussion of descriptive statistics that can aid the visual analysis of findings by summarizing patterns of data across phases. An example data set is used to illustrate the use of specific graphs, including box plots, standard deviation band graphs, and line charts showing the mean, median, and trimmed mean that can used to compare any two phases. SSD for R provides three standard methods for computing effect size, which are discussed in detail. Additionally, four methods of evaluating effect size using non-overlap methods are examined. The use of the goal line is discussed. The chapter concludes with a discussion of autocorrelation in the intervention phase and how to consider dealing with this issue.\",\"PeriodicalId\":197276,\"journal\":{\"name\":\"SSD for R\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SSD for R\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780197582756.003.0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SSD for R","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780197582756.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本章中,读者将了解在分析干预的成功以及如何进行可视化分析时要考虑的方法问题。本章以描述性统计的讨论开始,描述性统计可以通过总结各个阶段的数据模式来帮助对结果进行可视化分析。示例数据集用于说明特定图形的使用,包括箱形图、标准差带图和显示平均值、中位数和修剪平均值的折线图,可用于比较任何两个阶段。SSD for R提供了三种计算效应大小的标准方法,并对其进行了详细讨论。此外,研究了四种使用非重叠方法评估效应大小的方法。讨论了球门线的使用。本章最后讨论了干预阶段的自相关以及如何考虑处理这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing Baseline and Intervention Phases
In this chapter readers will learn about methodological issues to consider in analyzing the success of the intervention and how to conduct visual analysis. The chapter begins with a discussion of descriptive statistics that can aid the visual analysis of findings by summarizing patterns of data across phases. An example data set is used to illustrate the use of specific graphs, including box plots, standard deviation band graphs, and line charts showing the mean, median, and trimmed mean that can used to compare any two phases. SSD for R provides three standard methods for computing effect size, which are discussed in detail. Additionally, four methods of evaluating effect size using non-overlap methods are examined. The use of the goal line is discussed. The chapter concludes with a discussion of autocorrelation in the intervention phase and how to consider dealing with this issue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing Baseline and Intervention Phases Overview of SSDforR Functions Meta-Analysis in Single-Subject Evaluation Research Using RMarkdown to Present Your Findings Analyzing Baseline Phase Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1