利用配置依赖性实现软核处理器的快速区域高效定制

Deshya Wijesundera, Alok Prakash, S. Lam, T. Srikanthan
{"title":"利用配置依赖性实现软核处理器的快速区域高效定制","authors":"Deshya Wijesundera, Alok Prakash, S. Lam, T. Srikanthan","doi":"10.1145/2906363.2906385","DOIUrl":null,"url":null,"abstract":"The large number of possible configurations in modern soft-core processors make it tedious and time consuming to select the optimal configuration for a given application. In this paper, we propose a framework for rapid area-efficient customization of soft-core processors that exploits the dependencies between the various configuration options to prune the design space. Additionally, the proposed technique relies on rapid and accurate estimation models instead of the time consuming synthesis and execution techniques proposed in the existing work. Experimental results based on hand-coded applications and applications from the popular CHStone benchmark suite show that the proposed framework can rapidly and reliably select the best processor configuration for a given application and save an average of 47.58% area over the processor with all the configuration options enabled while achieving similar performance.","PeriodicalId":344390,"journal":{"name":"Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exploiting Configuration Dependencies for Rapid Area-efficient Customization of Soft-core Processors\",\"authors\":\"Deshya Wijesundera, Alok Prakash, S. Lam, T. Srikanthan\",\"doi\":\"10.1145/2906363.2906385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large number of possible configurations in modern soft-core processors make it tedious and time consuming to select the optimal configuration for a given application. In this paper, we propose a framework for rapid area-efficient customization of soft-core processors that exploits the dependencies between the various configuration options to prune the design space. Additionally, the proposed technique relies on rapid and accurate estimation models instead of the time consuming synthesis and execution techniques proposed in the existing work. Experimental results based on hand-coded applications and applications from the popular CHStone benchmark suite show that the proposed framework can rapidly and reliably select the best processor configuration for a given application and save an average of 47.58% area over the processor with all the configuration options enabled while achieving similar performance.\",\"PeriodicalId\":344390,\"journal\":{\"name\":\"Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2906363.2906385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2906363.2906385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

现代软核处理器中有大量可能的配置,为给定的应用程序选择最佳配置既繁琐又耗时。在本文中,我们提出了一个快速区域高效定制软核处理器的框架,该框架利用各种配置选项之间的依赖关系来减少设计空间。此外,该技术依赖于快速准确的估计模型,而不是现有工作中提出的耗时的综合和执行技术。基于手工编码应用程序和流行的CHStone基准测试套件的应用程序的实验结果表明,所提出的框架可以快速可靠地为给定的应用程序选择最佳的处理器配置,并且在实现相同性能的情况下,与启用所有配置选项相比,平均节省47.58%的处理器面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting Configuration Dependencies for Rapid Area-efficient Customization of Soft-core Processors
The large number of possible configurations in modern soft-core processors make it tedious and time consuming to select the optimal configuration for a given application. In this paper, we propose a framework for rapid area-efficient customization of soft-core processors that exploits the dependencies between the various configuration options to prune the design space. Additionally, the proposed technique relies on rapid and accurate estimation models instead of the time consuming synthesis and execution techniques proposed in the existing work. Experimental results based on hand-coded applications and applications from the popular CHStone benchmark suite show that the proposed framework can rapidly and reliably select the best processor configuration for a given application and save an average of 47.58% area over the processor with all the configuration options enabled while achieving similar performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Design Framework for Mapping Vectorized Synchronous Dataflow Graphs onto CPU-GPU Platforms Exploiting Configuration Dependencies for Rapid Area-efficient Customization of Soft-core Processors CSDFa: A Model for Exploiting the Trade-Off between Data and Pipeline Parallelism Cache-Aware Instruction SPM Allocation for Hard Real-Time Systems Exploring Single Source Shortest Path Parallelization on Shared Memory Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1