表面波纹度对风扇叶片边界层过渡和叶型损失的影响-第二部分:实验评估和应用

Jinwook Lee, Vaishnavi Ramaswamy, Z. Spakovszky, E. Greitzer, M. Drela, Jérôme Talbotec
{"title":"表面波纹度对风扇叶片边界层过渡和叶型损失的影响-第二部分:实验评估和应用","authors":"Jinwook Lee, Vaishnavi Ramaswamy, Z. Spakovszky, E. Greitzer, M. Drela, Jérôme Talbotec","doi":"10.1115/GT2021-58678","DOIUrl":null,"url":null,"abstract":"\n Part II describes the experimental assessment and the application of the ideas in Part I concerning the mechanisms that determine the role of blade surface waviness on laminar-turbulent transition and their consequent effect on civil aircraft fan performance. A natural transition wind tunnel was designed and constructed to characterize the impact of surface waviness on transition, using both hotwire anemometry and infrared thermography. The experimental results support the new hypothesis presented in Part I, concerning the way in which blade surface waviness affects fan performance through motion of the transition onset location due to interaction between surface waviness and Tollmien-Schlichting (TS) boundary layer instability. In particular, the theoretical amplification of the TS waves, and the corresponding transition onset location movement due to surface waviness, was borne out over a range of variations in Reynolds number, non-dimensional surface wavelength, non-dimensional surface wave height, and location of surface wave initiation, relevant to composite fan blade parameters. Further, the increase of receptivity coefficient, and thus the initial amplitude of disturbances due to geometric resonance between surface wavelength and TS wavelength, was also confirmed by the experiments. Surface waviness was estimated, in some cases, to result in a nearly 1% decrease in fan efficiency compared to a non-wavy blade. Suggestions are given for mitigation of the effects of waviness, including the idea of blade curvature rescheduling as a method to delay transition and thus decrease loss.","PeriodicalId":257596,"journal":{"name":"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Surface Waviness on Fan Blade Boundary Layer Transition and Profile Loss — Part II: Experimental Assessments and Applications\",\"authors\":\"Jinwook Lee, Vaishnavi Ramaswamy, Z. Spakovszky, E. Greitzer, M. Drela, Jérôme Talbotec\",\"doi\":\"10.1115/GT2021-58678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Part II describes the experimental assessment and the application of the ideas in Part I concerning the mechanisms that determine the role of blade surface waviness on laminar-turbulent transition and their consequent effect on civil aircraft fan performance. A natural transition wind tunnel was designed and constructed to characterize the impact of surface waviness on transition, using both hotwire anemometry and infrared thermography. The experimental results support the new hypothesis presented in Part I, concerning the way in which blade surface waviness affects fan performance through motion of the transition onset location due to interaction between surface waviness and Tollmien-Schlichting (TS) boundary layer instability. In particular, the theoretical amplification of the TS waves, and the corresponding transition onset location movement due to surface waviness, was borne out over a range of variations in Reynolds number, non-dimensional surface wavelength, non-dimensional surface wave height, and location of surface wave initiation, relevant to composite fan blade parameters. Further, the increase of receptivity coefficient, and thus the initial amplitude of disturbances due to geometric resonance between surface wavelength and TS wavelength, was also confirmed by the experiments. Surface waviness was estimated, in some cases, to result in a nearly 1% decrease in fan efficiency compared to a non-wavy blade. Suggestions are given for mitigation of the effects of waviness, including the idea of blade curvature rescheduling as a method to delay transition and thus decrease loss.\",\"PeriodicalId\":257596,\"journal\":{\"name\":\"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2021-58678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2021-58678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

第二部分描述了第一部分中关于决定叶片表面波浪度在层流-湍流过渡中的作用及其对民用飞机风扇性能的后续影响的机制的实验评估和应用。利用热线风速法和红外热成像技术,设计并构建了一个自然过渡风洞,以表征表面波浪度对过渡的影响。实验结果支持第一部分提出的新假设,即叶片表面波度与TS边界层不稳定性之间的相互作用通过过渡起始位置的运动影响风扇性能。特别是,在与复合风扇叶片参数相关的雷诺数、无量纲表面波长、无量纲表面波高和表面波起爆位置的一系列变化中,证实了TS波的理论放大,以及由于表面波纹度而引起的相应的过渡起爆位置移动。此外,实验还证实了接收系数的增加,以及表面波长与TS波长之间的几何共振引起的扰动的初始幅度。据估计,在某些情况下,与非波浪叶片相比,表面波浪会导致风扇效率降低近1%。提出了减轻波浪度影响的建议,包括叶片曲率重新调度的想法,作为延迟过渡从而减少损失的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Surface Waviness on Fan Blade Boundary Layer Transition and Profile Loss — Part II: Experimental Assessments and Applications
Part II describes the experimental assessment and the application of the ideas in Part I concerning the mechanisms that determine the role of blade surface waviness on laminar-turbulent transition and their consequent effect on civil aircraft fan performance. A natural transition wind tunnel was designed and constructed to characterize the impact of surface waviness on transition, using both hotwire anemometry and infrared thermography. The experimental results support the new hypothesis presented in Part I, concerning the way in which blade surface waviness affects fan performance through motion of the transition onset location due to interaction between surface waviness and Tollmien-Schlichting (TS) boundary layer instability. In particular, the theoretical amplification of the TS waves, and the corresponding transition onset location movement due to surface waviness, was borne out over a range of variations in Reynolds number, non-dimensional surface wavelength, non-dimensional surface wave height, and location of surface wave initiation, relevant to composite fan blade parameters. Further, the increase of receptivity coefficient, and thus the initial amplitude of disturbances due to geometric resonance between surface wavelength and TS wavelength, was also confirmed by the experiments. Surface waviness was estimated, in some cases, to result in a nearly 1% decrease in fan efficiency compared to a non-wavy blade. Suggestions are given for mitigation of the effects of waviness, including the idea of blade curvature rescheduling as a method to delay transition and thus decrease loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical Investigation of the Aerodynamic Performance of Hybrid Aerofoils in a 1.5-Stage Low-Speed Compressor Aerodynamic Mitigation of Mechanical Constraints in Small Compressor Blade Profiles Effects of Surface Waviness on Fan Blade Boundary Layer Transition and Profile Loss — Part II: Experimental Assessments and Applications An Experimental Investigation Into the Impacts of Varying the Circumferential Extent of Tip-Low Total Pressure Distortion on Fan Stability Experimental Characterization of the Evolution of Global Flow Structure in the Passage of an Axial Compressor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1