{"title":"具有回滚依赖可跟踪性的无盘检查点","authors":"R. Menderico, Islene C. Garcia","doi":"10.1109/SRDS.2010.17","DOIUrl":null,"url":null,"abstract":"One way to implement fault tolerant applications is storing its current state in stable memory and, when a failure occurs, restart the application from the last global consistent state. If the number of simultaneous failures is expected to be small a diskless check pointing approach can be used, where a failed process’s state can be determined only accessing non-faulty process’s memory. In the iterature diskless check pointing is usually based on synchronous protocols or properties of the application. In this paper we present a quasi-synchronous diskless check pointing algorithm, called RDT-Diskless, based on Rollback-Dependency Track ability. The proposed algorithm includes a garbage collection approach that limits the number of checkpoints that must be kept in memory. A framework, called Cheops, was developed and experimental results were obtained from a commercial cloud environment.","PeriodicalId":219204,"journal":{"name":"2010 29th IEEE Symposium on Reliable Distributed Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diskless Checkpointing with Rollback-Dependency Trackability\",\"authors\":\"R. Menderico, Islene C. Garcia\",\"doi\":\"10.1109/SRDS.2010.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One way to implement fault tolerant applications is storing its current state in stable memory and, when a failure occurs, restart the application from the last global consistent state. If the number of simultaneous failures is expected to be small a diskless check pointing approach can be used, where a failed process’s state can be determined only accessing non-faulty process’s memory. In the iterature diskless check pointing is usually based on synchronous protocols or properties of the application. In this paper we present a quasi-synchronous diskless check pointing algorithm, called RDT-Diskless, based on Rollback-Dependency Track ability. The proposed algorithm includes a garbage collection approach that limits the number of checkpoints that must be kept in memory. A framework, called Cheops, was developed and experimental results were obtained from a commercial cloud environment.\",\"PeriodicalId\":219204,\"journal\":{\"name\":\"2010 29th IEEE Symposium on Reliable Distributed Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 29th IEEE Symposium on Reliable Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2010.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 29th IEEE Symposium on Reliable Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2010.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diskless Checkpointing with Rollback-Dependency Trackability
One way to implement fault tolerant applications is storing its current state in stable memory and, when a failure occurs, restart the application from the last global consistent state. If the number of simultaneous failures is expected to be small a diskless check pointing approach can be used, where a failed process’s state can be determined only accessing non-faulty process’s memory. In the iterature diskless check pointing is usually based on synchronous protocols or properties of the application. In this paper we present a quasi-synchronous diskless check pointing algorithm, called RDT-Diskless, based on Rollback-Dependency Track ability. The proposed algorithm includes a garbage collection approach that limits the number of checkpoints that must be kept in memory. A framework, called Cheops, was developed and experimental results were obtained from a commercial cloud environment.