基于云的微生物宏基因组分析的有效方法

Jia Lin, Wen-Qing Luo, Wen-Pei Chen, M. Liou, Suh Jen Tsai, Yaw-Ling Lin
{"title":"基于云的微生物宏基因组分析的有效方法","authors":"Jia Lin, Wen-Qing Luo, Wen-Pei Chen, M. Liou, Suh Jen Tsai, Yaw-Ling Lin","doi":"10.1109/ICS.2016.0016","DOIUrl":null,"url":null,"abstract":"The growth of public DNA sequence and metagenomic data over the last two decades has been exponential. Bioinformatics researchers are confronted with analysis of massive data sets, while the problem is still growing at an alarming rate in the near future. In this paper, we integrate many open source software tools in biological sequences analysis to construct an effective cloud-based microbial metagenomics analysis tool. The proposed method incorporates the Hadoop framework, with combination of data analysis and data storage, which makes the analysis tools more efficient to work with Big Data behind the ever growing metagenomic DNA sequences.","PeriodicalId":281088,"journal":{"name":"2016 International Computer Symposium (ICS)","volume":"85 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Effective Approach for Cloud-Based Microbial Metagenomics Analysis\",\"authors\":\"Jia Lin, Wen-Qing Luo, Wen-Pei Chen, M. Liou, Suh Jen Tsai, Yaw-Ling Lin\",\"doi\":\"10.1109/ICS.2016.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth of public DNA sequence and metagenomic data over the last two decades has been exponential. Bioinformatics researchers are confronted with analysis of massive data sets, while the problem is still growing at an alarming rate in the near future. In this paper, we integrate many open source software tools in biological sequences analysis to construct an effective cloud-based microbial metagenomics analysis tool. The proposed method incorporates the Hadoop framework, with combination of data analysis and data storage, which makes the analysis tools more efficient to work with Big Data behind the ever growing metagenomic DNA sequences.\",\"PeriodicalId\":281088,\"journal\":{\"name\":\"2016 International Computer Symposium (ICS)\",\"volume\":\"85 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Computer Symposium (ICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICS.2016.0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Computer Symposium (ICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICS.2016.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年中,公共DNA序列和宏基因组数据呈指数级增长。生物信息学研究人员面临着海量数据集的分析问题,而这个问题在不久的将来仍将以惊人的速度增长。在本文中,我们整合了生物序列分析中的许多开源软件工具,构建了一个有效的基于云的微生物宏基因组分析工具。提出的方法结合Hadoop框架,将数据分析和数据存储相结合,使分析工具更高效地处理日益增长的宏基因组DNA序列背后的大数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Effective Approach for Cloud-Based Microbial Metagenomics Analysis
The growth of public DNA sequence and metagenomic data over the last two decades has been exponential. Bioinformatics researchers are confronted with analysis of massive data sets, while the problem is still growing at an alarming rate in the near future. In this paper, we integrate many open source software tools in biological sequences analysis to construct an effective cloud-based microbial metagenomics analysis tool. The proposed method incorporates the Hadoop framework, with combination of data analysis and data storage, which makes the analysis tools more efficient to work with Big Data behind the ever growing metagenomic DNA sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resource Allocation Algorithms for LTE over Wi-Fi Spectrum A Dynamically Adjusted Vehicles Navigation Scheme with Real-Time Traffic Information to Relieve Regional Traffic Congestion in Vehicular Ad-Hoc Networks Forward/Backward Unforgeable Digital Signature Scheme Using Symmetric-Key Crypto-System Mobile Edge Fog Computing in 5G Era: Architecture and Implementation Investigating the Determinants of Mobile Learning Acceptance in Higher Education Based on UTAUT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1