{"title":"有效规划等价的定量逻辑","authors":"Niels Voorneveld","doi":"10.1016/j.entcs.2019.09.015","DOIUrl":null,"url":null,"abstract":"<div><p>In order to reason about effects, we can define quantitative formulas to describe behavioural aspects of effectful programs. These formulas can for example express probabilities that (or sets of correct starting states for which) a program satisfies a property. Fundamental to this approach is the notion of quantitative modality, which is used to lift a property on values to a property on computations. Taking all formulas together, we say that two terms are equivalent if they satisfy all formulas to the same quantitative degree. Under sufficient conditions on the quantitative modalities, this equivalence is equal to a notion of Abramsky's applicative bisimilarity, and is moreover a congruence. We investigate these results in the context of Levy's call-by-push-value with general recursion and algebraic effects. For example, the results apply to (combinations of) nondeterministic choice, probabilistic choice, global store, and error.</p></div>","PeriodicalId":38770,"journal":{"name":"Electronic Notes in Theoretical Computer Science","volume":"347 ","pages":"Pages 281-301"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.entcs.2019.09.015","citationCount":"7","resultStr":"{\"title\":\"Quantitative Logics for Equivalence of Effectful Programs\",\"authors\":\"Niels Voorneveld\",\"doi\":\"10.1016/j.entcs.2019.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to reason about effects, we can define quantitative formulas to describe behavioural aspects of effectful programs. These formulas can for example express probabilities that (or sets of correct starting states for which) a program satisfies a property. Fundamental to this approach is the notion of quantitative modality, which is used to lift a property on values to a property on computations. Taking all formulas together, we say that two terms are equivalent if they satisfy all formulas to the same quantitative degree. Under sufficient conditions on the quantitative modalities, this equivalence is equal to a notion of Abramsky's applicative bisimilarity, and is moreover a congruence. We investigate these results in the context of Levy's call-by-push-value with general recursion and algebraic effects. For example, the results apply to (combinations of) nondeterministic choice, probabilistic choice, global store, and error.</p></div>\",\"PeriodicalId\":38770,\"journal\":{\"name\":\"Electronic Notes in Theoretical Computer Science\",\"volume\":\"347 \",\"pages\":\"Pages 281-301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.entcs.2019.09.015\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571066119301318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571066119301318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Quantitative Logics for Equivalence of Effectful Programs
In order to reason about effects, we can define quantitative formulas to describe behavioural aspects of effectful programs. These formulas can for example express probabilities that (or sets of correct starting states for which) a program satisfies a property. Fundamental to this approach is the notion of quantitative modality, which is used to lift a property on values to a property on computations. Taking all formulas together, we say that two terms are equivalent if they satisfy all formulas to the same quantitative degree. Under sufficient conditions on the quantitative modalities, this equivalence is equal to a notion of Abramsky's applicative bisimilarity, and is moreover a congruence. We investigate these results in the context of Levy's call-by-push-value with general recursion and algebraic effects. For example, the results apply to (combinations of) nondeterministic choice, probabilistic choice, global store, and error.
期刊介绍:
ENTCS is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication and the availability on the electronic media is appropriate. Organizers of conferences whose proceedings appear in ENTCS, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.