面向车辆共享控制的脑电信号最优部分滤波

W. Huh, Sung-Bae Cho
{"title":"面向车辆共享控制的脑电信号最优部分滤波","authors":"W. Huh, Sung-Bae Cho","doi":"10.1109/SOCPAR.2015.7492823","DOIUrl":null,"url":null,"abstract":"The development of equipment that measures EEG signals leads to the research that applies them to many domains. There are active research going on EEG signals for shared vehicle control system between human and car. An appropriate filtering method is also important because EEG signals normally have lots of noises. To reduce such noises, full matrix filter, sparse matrix reference filter, and common average reference (CAR) filter are presented and analyzed in this paper. In order to develop shared vehicle control system, we use controller, brain-computer interface (BCI), EEG signals, and car simulator program. By executing t-test, it was possible to find the optimal filter out of three filters mentioned above. With the analysis of t-test, it has revealed that full matrix filter is not appropriate for shared vehicle control system. In addition, it proves CAR filter has the best performance among these filters.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal partial filters of EEG signals for shared control of vehicle\",\"authors\":\"W. Huh, Sung-Bae Cho\",\"doi\":\"10.1109/SOCPAR.2015.7492823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of equipment that measures EEG signals leads to the research that applies them to many domains. There are active research going on EEG signals for shared vehicle control system between human and car. An appropriate filtering method is also important because EEG signals normally have lots of noises. To reduce such noises, full matrix filter, sparse matrix reference filter, and common average reference (CAR) filter are presented and analyzed in this paper. In order to develop shared vehicle control system, we use controller, brain-computer interface (BCI), EEG signals, and car simulator program. By executing t-test, it was possible to find the optimal filter out of three filters mentioned above. With the analysis of t-test, it has revealed that full matrix filter is not appropriate for shared vehicle control system. In addition, it proves CAR filter has the best performance among these filters.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

测量脑电图信号的设备的发展导致了将其应用于许多领域的研究。脑电图信号在人车共享控制系统中的应用研究十分活跃。由于脑电信号通常含有大量的噪声,因此适当的滤波方法也很重要。为了降低噪声,本文提出并分析了全矩阵滤波器、稀疏矩阵参考滤波器和共同平均参考滤波器。采用控制器、脑机接口(BCI)、脑电图信号和汽车仿真程序开发共享汽车控制系统。通过执行t检验,可以从上面提到的三个过滤器中找到最佳过滤器。通过t检验分析,揭示了全矩阵滤波不适用于共享汽车控制系统。此外,还证明了CAR滤波器在这些滤波器中具有最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal partial filters of EEG signals for shared control of vehicle
The development of equipment that measures EEG signals leads to the research that applies them to many domains. There are active research going on EEG signals for shared vehicle control system between human and car. An appropriate filtering method is also important because EEG signals normally have lots of noises. To reduce such noises, full matrix filter, sparse matrix reference filter, and common average reference (CAR) filter are presented and analyzed in this paper. In order to develop shared vehicle control system, we use controller, brain-computer interface (BCI), EEG signals, and car simulator program. By executing t-test, it was possible to find the optimal filter out of three filters mentioned above. With the analysis of t-test, it has revealed that full matrix filter is not appropriate for shared vehicle control system. In addition, it proves CAR filter has the best performance among these filters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An effective AIS-based model for frequency assignment in mobile communication An innovative approach for feature selection based on chicken swarm optimization Vertical collaborative clustering using generative topographic maps Solving the obstacle neutralization problem using swarm intelligence algorithms Optimal partial filters of EEG signals for shared control of vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1