基于机器学习的乳腺癌分类算法的soc实现

AbdelRahman Saeed, Ayman Tawfik, Hassan Mostafa, A. Khalil
{"title":"基于机器学习的乳腺癌分类算法的soc实现","authors":"AbdelRahman Saeed, Ayman Tawfik, Hassan Mostafa, A. Khalil","doi":"10.1109/MECO58584.2023.10154967","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNN) have drawn the attention of researchers in the medical imaging field. Many researchers have exploited CNN for breast cancer detection. This study provides an Internet of Things (IoT) friendly implementation of CNN for breast cancer detection. To achieve faster time to Market, Deep-learning Processing Unit (DPU) on Field Programmable Gate Array (FPGA) is adopted for the CNN hardware implementation. CNN inference on the proposed system achieves a 1.6x speed-up factor and 91.5% reduction in energy consumption compared to the conventional general-purpose multi-core Central Processing Unit (CPU).","PeriodicalId":187825,"journal":{"name":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SoC-Oriented Implementation of Machine Learning Based Breast Cancer Classification Algorithm\",\"authors\":\"AbdelRahman Saeed, Ayman Tawfik, Hassan Mostafa, A. Khalil\",\"doi\":\"10.1109/MECO58584.2023.10154967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNN) have drawn the attention of researchers in the medical imaging field. Many researchers have exploited CNN for breast cancer detection. This study provides an Internet of Things (IoT) friendly implementation of CNN for breast cancer detection. To achieve faster time to Market, Deep-learning Processing Unit (DPU) on Field Programmable Gate Array (FPGA) is adopted for the CNN hardware implementation. CNN inference on the proposed system achieves a 1.6x speed-up factor and 91.5% reduction in energy consumption compared to the conventional general-purpose multi-core Central Processing Unit (CPU).\",\"PeriodicalId\":187825,\"journal\":{\"name\":\"2023 12th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 12th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO58584.2023.10154967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO58584.2023.10154967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)已经引起了医学成像领域研究人员的关注。许多研究人员利用CNN来检测乳腺癌。本研究提供了一种物联网(IoT)友好的CNN用于乳腺癌检测。为了加快产品上市速度,CNN的硬件实现采用了现场可编程门阵列(FPGA)上的深度学习处理单元(Deep-learning Processing Unit, DPU)。与传统的通用多核中央处理器(CPU)相比,该系统的CNN推理实现了1.6倍的加速系数和91.5%的能耗降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SoC-Oriented Implementation of Machine Learning Based Breast Cancer Classification Algorithm
Convolutional Neural Networks (CNN) have drawn the attention of researchers in the medical imaging field. Many researchers have exploited CNN for breast cancer detection. This study provides an Internet of Things (IoT) friendly implementation of CNN for breast cancer detection. To achieve faster time to Market, Deep-learning Processing Unit (DPU) on Field Programmable Gate Array (FPGA) is adopted for the CNN hardware implementation. CNN inference on the proposed system achieves a 1.6x speed-up factor and 91.5% reduction in energy consumption compared to the conventional general-purpose multi-core Central Processing Unit (CPU).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Blockchain Platforms for Generation and Verification of Diplomas Minimizing the Total Completion Time of Jobs for a Permutation Flow-Shop System Double Buffered Angular Speed Measurement Method for Self-Calibration of Magnetoresistive Sensors Quantum Resilient Public Key Cryptography in Internet of Things Crop yield forecasting with climate data using PCA and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1