遗传算法在信号分类中的知识提取

A. J. Cantos, M. Santos
{"title":"遗传算法在信号分类中的知识提取","authors":"A. J. Cantos, M. Santos","doi":"10.1109/WISP.2007.4447625","DOIUrl":null,"url":null,"abstract":"In the analysis of signals from massive databases it is desirable to have automatic mechanisms for classification. The synergy of diverse artificial intelligence techniques with advanced signal representation models is becoming very efficient in developing this kind of task. In this paper, it is shown that genetic algorithms focused on rule discovery might be used for this purpose. In our approach, each individual represents a classifying rule, composed of an antecedent and a consequence. Using a technique based on niches in order to avoid the extinction of any of the species, we obtain several solutions that form an expert classification system. The results have been compared with those of other classifiers on the same signals and they show efficiency of our procedure.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge extraction in signals classification with genetic algorithms\",\"authors\":\"A. J. Cantos, M. Santos\",\"doi\":\"10.1109/WISP.2007.4447625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the analysis of signals from massive databases it is desirable to have automatic mechanisms for classification. The synergy of diverse artificial intelligence techniques with advanced signal representation models is becoming very efficient in developing this kind of task. In this paper, it is shown that genetic algorithms focused on rule discovery might be used for this purpose. In our approach, each individual represents a classifying rule, composed of an antecedent and a consequence. Using a technique based on niches in order to avoid the extinction of any of the species, we obtain several solutions that form an expert classification system. The results have been compared with those of other classifiers on the same signals and they show efficiency of our procedure.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在分析来自海量数据库的信号时,需要有自动分类机制。各种人工智能技术与先进的信号表示模型的协同作用在开发这类任务中变得非常有效。在本文中,我们证明了专注于规则发现的遗传算法可以用于此目的。在我们的方法中,每个个体代表一个分类规则,由一个先行词和一个结果组成。为了避免任何物种的灭绝,我们使用基于生态位的技术,得到了几个解决方案,形成了一个专家分类系统。结果与其他分类器在相同信号上的分类结果进行了比较,表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge extraction in signals classification with genetic algorithms
In the analysis of signals from massive databases it is desirable to have automatic mechanisms for classification. The synergy of diverse artificial intelligence techniques with advanced signal representation models is becoming very efficient in developing this kind of task. In this paper, it is shown that genetic algorithms focused on rule discovery might be used for this purpose. In our approach, each individual represents a classifying rule, composed of an antecedent and a consequence. Using a technique based on niches in order to avoid the extinction of any of the species, we obtain several solutions that form an expert classification system. The results have been compared with those of other classifiers on the same signals and they show efficiency of our procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Developments in All-Optical Nonlinear Signal Processing for Fiber-Optic Communications Robust Ultrasonic Spread-Spectrum Positioning System using a AoA/ToA Method Distributed perception for a group of legged robots Advanced Multisensorial Barrier for Obstacle Detection Visual Model Feature Tracking For UAV Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1