{"title":"强化学习和自动分类","authors":"J. M. Porta, E. Celaya","doi":"10.1109/ETFA.1999.815351","DOIUrl":null,"url":null,"abstract":"The categorization process defines sensor and action categories from elementary sensor readings and basic actions so that the necessary elements for solving a task are correctly perceived and manipulated. In reinforcement learning, a previous categorization process is needed to define sensor and action categories with special requirements that we analyze and that, in general, are difficult to achieve, especially in complex tasks such as those that arise when working with autonomous robots. We show how these special requirements should be relaxed and we sketch a reinforcement learning algorithm that uses a less restrictive form of sensory categorization than existing algorithms. Additionally, we show how a given sensory categorization can be improved so that it better fits the demands of the previous algorithm.","PeriodicalId":119106,"journal":{"name":"1999 7th IEEE International Conference on Emerging Technologies and Factory Automation. Proceedings ETFA '99 (Cat. No.99TH8467)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reinforcement learning and automatic categorization\",\"authors\":\"J. M. Porta, E. Celaya\",\"doi\":\"10.1109/ETFA.1999.815351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The categorization process defines sensor and action categories from elementary sensor readings and basic actions so that the necessary elements for solving a task are correctly perceived and manipulated. In reinforcement learning, a previous categorization process is needed to define sensor and action categories with special requirements that we analyze and that, in general, are difficult to achieve, especially in complex tasks such as those that arise when working with autonomous robots. We show how these special requirements should be relaxed and we sketch a reinforcement learning algorithm that uses a less restrictive form of sensory categorization than existing algorithms. Additionally, we show how a given sensory categorization can be improved so that it better fits the demands of the previous algorithm.\",\"PeriodicalId\":119106,\"journal\":{\"name\":\"1999 7th IEEE International Conference on Emerging Technologies and Factory Automation. Proceedings ETFA '99 (Cat. No.99TH8467)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 7th IEEE International Conference on Emerging Technologies and Factory Automation. Proceedings ETFA '99 (Cat. No.99TH8467)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.1999.815351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 7th IEEE International Conference on Emerging Technologies and Factory Automation. Proceedings ETFA '99 (Cat. No.99TH8467)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.1999.815351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分类过程根据基本传感器读数和基本动作定义传感器和动作类别,以便正确地感知和操作解决任务所需的元素。在强化学习中,需要先前的分类过程来定义具有我们分析的特殊要求的传感器和动作类别,并且通常难以实现,特别是在复杂的任务中,例如与自主机器人一起工作时出现的任务。我们展示了这些特殊要求应该如何放松,并概述了一种强化学习算法,该算法使用比现有算法限制更少的感官分类形式。此外,我们展示了如何改进给定的感官分类,使其更好地符合先前算法的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement learning and automatic categorization
The categorization process defines sensor and action categories from elementary sensor readings and basic actions so that the necessary elements for solving a task are correctly perceived and manipulated. In reinforcement learning, a previous categorization process is needed to define sensor and action categories with special requirements that we analyze and that, in general, are difficult to achieve, especially in complex tasks such as those that arise when working with autonomous robots. We show how these special requirements should be relaxed and we sketch a reinforcement learning algorithm that uses a less restrictive form of sensory categorization than existing algorithms. Additionally, we show how a given sensory categorization can be improved so that it better fits the demands of the previous algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated information system for monitoring, scheduling and control applied to batch chemical processes ATM networks for factory communication Linux in factory automation? Internet controlling of fieldbus systems! Comparison between CIMS and CIPS Evolutionary algorithms for adaptive predictive control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1