{"title":"基于LS-SVM和粒子群优化的水质预测","authors":"Yunrong Xiang, Liang-zhong Jiang","doi":"10.1109/WKDD.2009.217","DOIUrl":null,"url":null,"abstract":"This paper deals with the study of a water quality prediction model through application of LS-SVM in Liuxi River in Guangzhou. To overcome the shortcomings of traditional BP algorithm as being slow to converge and easy to reach extreme minimum value, least squares support vector machine (LS-SVM) combined with particle swarm optimization (PSO) is used to time series prediction. The LS-SVM can overcome some shortcoming in the Multilayer Perceptron (MLP) and the PSO is used to tune the LS-SVM parameters automatically. It enhances the efficiency and the capability of prediction. Through simulation testing the model shows high efficiency in forecasting the water quality of the Liuxi River.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Water Quality Prediction Using LS-SVM and Particle Swarm Optimization\",\"authors\":\"Yunrong Xiang, Liang-zhong Jiang\",\"doi\":\"10.1109/WKDD.2009.217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the study of a water quality prediction model through application of LS-SVM in Liuxi River in Guangzhou. To overcome the shortcomings of traditional BP algorithm as being slow to converge and easy to reach extreme minimum value, least squares support vector machine (LS-SVM) combined with particle swarm optimization (PSO) is used to time series prediction. The LS-SVM can overcome some shortcoming in the Multilayer Perceptron (MLP) and the PSO is used to tune the LS-SVM parameters automatically. It enhances the efficiency and the capability of prediction. Through simulation testing the model shows high efficiency in forecasting the water quality of the Liuxi River.\",\"PeriodicalId\":143250,\"journal\":{\"name\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2009.217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Water Quality Prediction Using LS-SVM and Particle Swarm Optimization
This paper deals with the study of a water quality prediction model through application of LS-SVM in Liuxi River in Guangzhou. To overcome the shortcomings of traditional BP algorithm as being slow to converge and easy to reach extreme minimum value, least squares support vector machine (LS-SVM) combined with particle swarm optimization (PSO) is used to time series prediction. The LS-SVM can overcome some shortcoming in the Multilayer Perceptron (MLP) and the PSO is used to tune the LS-SVM parameters automatically. It enhances the efficiency and the capability of prediction. Through simulation testing the model shows high efficiency in forecasting the water quality of the Liuxi River.