无结构光照条件下GLCM特征与GANN相结合的婴儿疼痛识别系统

M. N. Mansor, Mohd Nazri Rejab
{"title":"无结构光照条件下GLCM特征与GANN相结合的婴儿疼痛识别系统","authors":"M. N. Mansor, Mohd Nazri Rejab","doi":"10.1109/ICCSCE.2013.6719967","DOIUrl":null,"url":null,"abstract":"This paper discussed the crucial demand regarding the scheme to translate the silence voice from the newborn. The infant can't afford to express their feeling of pain by voice. Hence, we proudly present an infant pain recognition system to overcome this matter. We employed the Single Scale Retinex (SSR) to remove the illumination level. Secondly, Gray-Level Co-occurrence Matrix (GLCM) was adopted as the feature extraction. We determine the condition of the infants (pain/no pain) with Hybrid Genetic Algorithm Neural Network (GANN) and Linear Discriminant Analysis (LDA). Several examples were conducted to evaluate the performance of the proposed method under different illumination levels.","PeriodicalId":319285,"journal":{"name":"2013 IEEE International Conference on Control System, Computing and Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Infant pain recognition system with GLCM features and GANN under unstructed lighting condition\",\"authors\":\"M. N. Mansor, Mohd Nazri Rejab\",\"doi\":\"10.1109/ICCSCE.2013.6719967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discussed the crucial demand regarding the scheme to translate the silence voice from the newborn. The infant can't afford to express their feeling of pain by voice. Hence, we proudly present an infant pain recognition system to overcome this matter. We employed the Single Scale Retinex (SSR) to remove the illumination level. Secondly, Gray-Level Co-occurrence Matrix (GLCM) was adopted as the feature extraction. We determine the condition of the infants (pain/no pain) with Hybrid Genetic Algorithm Neural Network (GANN) and Linear Discriminant Analysis (LDA). Several examples were conducted to evaluate the performance of the proposed method under different illumination levels.\",\"PeriodicalId\":319285,\"journal\":{\"name\":\"2013 IEEE International Conference on Control System, Computing and Engineering\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Control System, Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE.2013.6719967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control System, Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2013.6719967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文讨论了新生儿沉默语音翻译方案的关键要求。婴儿无法用声音表达他们的痛苦。因此,我们自豪地提出一个婴儿疼痛识别系统来克服这个问题。我们采用单尺度视网膜(SSR)去除光照水平。其次,采用灰度共生矩阵(GLCM)进行特征提取;采用遗传算法神经网络(GANN)和线性判别分析(LDA)相结合的方法确定婴儿的疼痛状态(疼痛/无疼痛)。通过几个算例对该方法在不同光照水平下的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Infant pain recognition system with GLCM features and GANN under unstructed lighting condition
This paper discussed the crucial demand regarding the scheme to translate the silence voice from the newborn. The infant can't afford to express their feeling of pain by voice. Hence, we proudly present an infant pain recognition system to overcome this matter. We employed the Single Scale Retinex (SSR) to remove the illumination level. Secondly, Gray-Level Co-occurrence Matrix (GLCM) was adopted as the feature extraction. We determine the condition of the infants (pain/no pain) with Hybrid Genetic Algorithm Neural Network (GANN) and Linear Discriminant Analysis (LDA). Several examples were conducted to evaluate the performance of the proposed method under different illumination levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital aerial imagery of unmanned aerial vehicle for various applications Performance study of preliminary mini anechoic chamber fitted with coconut shell coated absorbers A new approach for the design of relay control circuits Design of ultra wideband rectangular microstrip notched patch antenna Delay compensation using PID controller and GA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1