存在有界扰动时Hammerstein模型的辨识

M. Boutayeb, M. Darouach
{"title":"存在有界扰动时Hammerstein模型的辨识","authors":"M. Boutayeb, M. Darouach","doi":"10.1109/ICIT.2000.854234","DOIUrl":null,"url":null,"abstract":"In this paper we propose a simple and useful method for recursive identification of multi-input single-output (MISO) Hammerstein model in the presence of unknown but bounded disturbances. The proposed algorithm is performed so that the estimated parameters are consistent with the measurements and the noise constraints. Sufficient conditions for asymptotic convergence are established by the aid of the Lyapunov approach.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identification of the Hammerstein model in the presence of bounded disturbances\",\"authors\":\"M. Boutayeb, M. Darouach\",\"doi\":\"10.1109/ICIT.2000.854234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a simple and useful method for recursive identification of multi-input single-output (MISO) Hammerstein model in the presence of unknown but bounded disturbances. The proposed algorithm is performed so that the estimated parameters are consistent with the measurements and the noise constraints. Sufficient conditions for asymptotic convergence are established by the aid of the Lyapunov approach.\",\"PeriodicalId\":405648,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2000.854234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种简单实用的多输入单输出(MISO) Hammerstein模型在未知有界干扰下的递归辨识方法。该算法使估计参数与测量值和噪声约束相一致。利用Lyapunov方法,建立了渐近收敛的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of the Hammerstein model in the presence of bounded disturbances
In this paper we propose a simple and useful method for recursive identification of multi-input single-output (MISO) Hammerstein model in the presence of unknown but bounded disturbances. The proposed algorithm is performed so that the estimated parameters are consistent with the measurements and the noise constraints. Sufficient conditions for asymptotic convergence are established by the aid of the Lyapunov approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of nonlinear nonautonomous state space systems from input-output measurements On stabilizing gains far digital control systems Developing an experimental mobile robot-ROVEL Failure detection/management in launch vehicle avionics Static UPS failures-origin and possible prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1