云下:一种新颖的内容可寻址数据框架,用于云并行化,以创建和虚拟化新型云应用程序

Amir H. Basirat, A. Amin, Asad I. Khan
{"title":"云下:一种新颖的内容可寻址数据框架,用于云并行化,以创建和虚拟化新型云应用程序","authors":"Amir H. Basirat, A. Amin, Asad I. Khan","doi":"10.1109/NCA.2010.29","DOIUrl":null,"url":null,"abstract":"Existing data management schemes in clouds are mainly based on Google File System (GFS) and MapReduce. Problems arise when data partitioning among numerous available nodes therein. This research paper explores new methods of partitioning and distributing data, that is, resource virtualization in cloud computing. Loosely-coupled associative computing techniques, which have so far not been considered for clouds, can provide the break through needed for their data management. Applications based on associative computing models can efficiently utilize the underlying hardware to scale up and down the system resources dynamically. In doing so, the main hurdle towards providing scalable partitioning and distribution of data in the clouds is removed, bringing forth a vastly superior solution for virtualizing data intensive applications and the system infrastructure to support pay on per-use basis.","PeriodicalId":276374,"journal":{"name":"2010 Ninth IEEE International Symposium on Network Computing and Applications","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Under the Cloud: A Novel Content Addressable Data Framework for Cloud Parallelization to Create and Virtualize New Breeds of Cloud Applications\",\"authors\":\"Amir H. Basirat, A. Amin, Asad I. Khan\",\"doi\":\"10.1109/NCA.2010.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing data management schemes in clouds are mainly based on Google File System (GFS) and MapReduce. Problems arise when data partitioning among numerous available nodes therein. This research paper explores new methods of partitioning and distributing data, that is, resource virtualization in cloud computing. Loosely-coupled associative computing techniques, which have so far not been considered for clouds, can provide the break through needed for their data management. Applications based on associative computing models can efficiently utilize the underlying hardware to scale up and down the system resources dynamically. In doing so, the main hurdle towards providing scalable partitioning and distribution of data in the clouds is removed, bringing forth a vastly superior solution for virtualizing data intensive applications and the system infrastructure to support pay on per-use basis.\",\"PeriodicalId\":276374,\"journal\":{\"name\":\"2010 Ninth IEEE International Symposium on Network Computing and Applications\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth IEEE International Symposium on Network Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCA.2010.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth IEEE International Symposium on Network Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA.2010.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

现有的云数据管理方案主要基于Google File System (GFS)和MapReduce。当数据在其中的许多可用节点之间进行分区时,就会出现问题。本文探讨了云计算中数据分区和分布的新方法,即资源虚拟化。松耦合的关联计算技术迄今尚未被考虑用于云计算,但它可以为云数据管理提供所需的突破。基于关联计算模型的应用程序可以有效地利用底层硬件来动态地扩展和缩减系统资源。通过这样做,消除了在云中提供可伸缩分区和数据分发的主要障碍,为虚拟化数据密集型应用程序和系统基础设施提供了一个非常优越的解决方案,以支持按使用付费。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Under the Cloud: A Novel Content Addressable Data Framework for Cloud Parallelization to Create and Virtualize New Breeds of Cloud Applications
Existing data management schemes in clouds are mainly based on Google File System (GFS) and MapReduce. Problems arise when data partitioning among numerous available nodes therein. This research paper explores new methods of partitioning and distributing data, that is, resource virtualization in cloud computing. Loosely-coupled associative computing techniques, which have so far not been considered for clouds, can provide the break through needed for their data management. Applications based on associative computing models can efficiently utilize the underlying hardware to scale up and down the system resources dynamically. In doing so, the main hurdle towards providing scalable partitioning and distribution of data in the clouds is removed, bringing forth a vastly superior solution for virtualizing data intensive applications and the system infrastructure to support pay on per-use basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Performance Model of Gossip-Based Update Propagation QoS-enabled Video Streaming in Wireless Sensor Networks Distributed Clustering Algorithms for Lossy Wireless Sensor Networks Colocation as a Service: Strategic and Operational Services for Cloud Colocation Under the Cloud: A Novel Content Addressable Data Framework for Cloud Parallelization to Create and Virtualize New Breeds of Cloud Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1