无特征分解的最小范数法高分辨率到达方向估计

A. Shaw, W. Xia
{"title":"无特征分解的最小范数法高分辨率到达方向估计","authors":"A. Shaw, W. Xia","doi":"10.1109/ICASSP.1994.389831","DOIUrl":null,"url":null,"abstract":"The minimum-norm method (MNM) for high-resolution directions-of-arrival (DOA) estimation relies on special purpose hardware or software for obtaining the signal and noise subspace eigenvectors of autocorrelation (AC) matrices. It is shown in this paper that the DFT of the AC matrix (DFT-of-AC) essentially performs an equivalent task of separating the signal and noise subspaces. Furthermore, when the signal-subspace part of the DFT-of-AC vectors are used in the minimum-norm framework, almost identical high-resolution DOA estimates are produced. When compared with eigendecomposition-based MNM, the computational load of the proposed DFT-based approach (D-MNM) is lower but the bias, mean-squared error and the root locations are almost similar. The simulations further show that at low SNR the performance of D-MNM is more robust and it also has superior dynamic range.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-resolution direction of arrival estimation using minimum-norm method without eigendecomposition\",\"authors\":\"A. Shaw, W. Xia\",\"doi\":\"10.1109/ICASSP.1994.389831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minimum-norm method (MNM) for high-resolution directions-of-arrival (DOA) estimation relies on special purpose hardware or software for obtaining the signal and noise subspace eigenvectors of autocorrelation (AC) matrices. It is shown in this paper that the DFT of the AC matrix (DFT-of-AC) essentially performs an equivalent task of separating the signal and noise subspaces. Furthermore, when the signal-subspace part of the DFT-of-AC vectors are used in the minimum-norm framework, almost identical high-resolution DOA estimates are produced. When compared with eigendecomposition-based MNM, the computational load of the proposed DFT-based approach (D-MNM) is lower but the bias, mean-squared error and the root locations are almost similar. The simulations further show that at low SNR the performance of D-MNM is more robust and it also has superior dynamic range.<<ETX>>\",\"PeriodicalId\":290798,\"journal\":{\"name\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1994.389831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用于高分辨率到达方向(DOA)估计的最小范数方法(MNM)依赖于专用的硬件或软件来获取自相关(AC)矩阵的信号和噪声子空间特征向量。本文表明,交流矩阵的DFT (DFT-of-AC)本质上完成了分离信号和噪声子空间的等效任务。此外,当在最小范数框架中使用交流向量的dft的信号子空间部分时,产生几乎相同的高分辨率DOA估计。与基于特征分解的MNM相比,本文提出的DFT-based方法(D-MNM)的计算量更小,但偏差、均方误差和根位置几乎相同。仿真结果进一步表明,在低信噪比条件下,D-MNM具有更好的鲁棒性和动态范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-resolution direction of arrival estimation using minimum-norm method without eigendecomposition
The minimum-norm method (MNM) for high-resolution directions-of-arrival (DOA) estimation relies on special purpose hardware or software for obtaining the signal and noise subspace eigenvectors of autocorrelation (AC) matrices. It is shown in this paper that the DFT of the AC matrix (DFT-of-AC) essentially performs an equivalent task of separating the signal and noise subspaces. Furthermore, when the signal-subspace part of the DFT-of-AC vectors are used in the minimum-norm framework, almost identical high-resolution DOA estimates are produced. When compared with eigendecomposition-based MNM, the computational load of the proposed DFT-based approach (D-MNM) is lower but the bias, mean-squared error and the root locations are almost similar. The simulations further show that at low SNR the performance of D-MNM is more robust and it also has superior dynamic range.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new cumulant based parameter estimation method for noncausal autoregressive systems Using Gaussian mixture modeling in speech recognition An evaluation of cross-language adaptation for rapid HMM development in a new language Unsupervised segmentation of radar images using wavelet decomposition and cumulants Improving speech recognition performance via phone-dependent VQ codebooks and adaptive language models in SPHINX-II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1