噪声归一化对神经相似性可靠性的不可靠影响

J. Ritchie, Haemy Lee Masson, Stefania Bracci, H. O. D. Beeck
{"title":"噪声归一化对神经相似性可靠性的不可靠影响","authors":"J. Ritchie, Haemy Lee Masson, Stefania Bracci, H. O. D. Beeck","doi":"10.32470/ccn.2019.1150-0","DOIUrl":null,"url":null,"abstract":"Representational similarity analysis (RSA) is increasingly part of the standard analytic toolkit in neuroimaging. Core to RSA is the measuring of neural dissimilarity between the response patterns for different conditions to construct neural representational dissimilarity matrices (RDMs). It has been proposed that noise normalizing these patterns, and using crossvalidated distances as a dissimilarity measure, is superior for characterizing the structure of neural RDMs. This assessment has been motivated by improvement in within-subject neural dissimilarity after noise normalization. However, between-subject reliability is more directly related to determining the amount of explainable variance, and the evaluation of observed effect sizes when they are correlated with behavioral or model RDMs. Across three datasets we did not find that noise normalization consistently boosts within-subject reliability, between-subject reliability or correlations with behavioral or model RDMs. Overall, our results provide equivocal support for the utility of noise normalization to RSA.","PeriodicalId":281121,"journal":{"name":"2019 Conference on Cognitive Computational Neuroscience","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Unreliable Influence of Noise Normalization on the Reliability of Neural Dissimilarity\",\"authors\":\"J. Ritchie, Haemy Lee Masson, Stefania Bracci, H. O. D. Beeck\",\"doi\":\"10.32470/ccn.2019.1150-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representational similarity analysis (RSA) is increasingly part of the standard analytic toolkit in neuroimaging. Core to RSA is the measuring of neural dissimilarity between the response patterns for different conditions to construct neural representational dissimilarity matrices (RDMs). It has been proposed that noise normalizing these patterns, and using crossvalidated distances as a dissimilarity measure, is superior for characterizing the structure of neural RDMs. This assessment has been motivated by improvement in within-subject neural dissimilarity after noise normalization. However, between-subject reliability is more directly related to determining the amount of explainable variance, and the evaluation of observed effect sizes when they are correlated with behavioral or model RDMs. Across three datasets we did not find that noise normalization consistently boosts within-subject reliability, between-subject reliability or correlations with behavioral or model RDMs. Overall, our results provide equivocal support for the utility of noise normalization to RSA.\",\"PeriodicalId\":281121,\"journal\":{\"name\":\"2019 Conference on Cognitive Computational Neuroscience\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Cognitive Computational Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32470/ccn.2019.1150-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Cognitive Computational Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32470/ccn.2019.1150-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

表征相似性分析(RSA)日益成为神经影像学标准分析工具的一部分。RSA的核心是测量不同条件下响应模式之间的神经不相似性,从而构建神经表征不相似性矩阵(rdm)。有人提出,噪声归一化这些模式,并使用交叉验证距离作为不相似度量,是优越的表征神经rdm的结构。这种评估的动机是在噪声归一化后受试者内神经差异的改善。然而,受试者之间的信度更直接地与确定可解释方差的数量以及与行为或模型rdm相关时观察到的效应大小的评估有关。在三个数据集中,我们没有发现噪声归一化始终提高主体内可靠性、主体间可靠性或与行为或模型rdm的相关性。总的来说,我们的结果为噪声归一化对RSA的效用提供了模棱两可的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Unreliable Influence of Noise Normalization on the Reliability of Neural Dissimilarity
Representational similarity analysis (RSA) is increasingly part of the standard analytic toolkit in neuroimaging. Core to RSA is the measuring of neural dissimilarity between the response patterns for different conditions to construct neural representational dissimilarity matrices (RDMs). It has been proposed that noise normalizing these patterns, and using crossvalidated distances as a dissimilarity measure, is superior for characterizing the structure of neural RDMs. This assessment has been motivated by improvement in within-subject neural dissimilarity after noise normalization. However, between-subject reliability is more directly related to determining the amount of explainable variance, and the evaluation of observed effect sizes when they are correlated with behavioral or model RDMs. Across three datasets we did not find that noise normalization consistently boosts within-subject reliability, between-subject reliability or correlations with behavioral or model RDMs. Overall, our results provide equivocal support for the utility of noise normalization to RSA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narratives as Networks: Predicting Memory from the Structure of Naturalistic Events Subtractive gating improves generalization in working memory tasks Do LSTMs know about Principle C? Unfolding of multisensory inference in the brain and behavior Adversarial Training of Neural Encoding Models on Population Spike Trains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1