MDD @ AMI:鉴别厌女症的香草分类器(短文)

Samer El Abassi, Sergiu Nisioi
{"title":"MDD @ AMI:鉴别厌女症的香草分类器(短文)","authors":"Samer El Abassi, Sergiu Nisioi","doi":"10.4000/BOOKS.AACCADEMIA.6819","DOIUrl":null,"url":null,"abstract":"In this report1, we present a set of vanilla classifiers that we used to identify misogynous and aggressive texts in Italian social media. Our analysis shows that simple classifiers with little feature engineering have a strong tendency to overfit and yield a strong bias on the test set. Additionally, we investigate the usefulness of function words, pronouns, and shallow-syntactical features to observe whether misogynous or aggressive texts have specific stylistic elements.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MDD @ AMI: Vanilla Classifiers for Misogyny Identification (short paper)\",\"authors\":\"Samer El Abassi, Sergiu Nisioi\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.6819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this report1, we present a set of vanilla classifiers that we used to identify misogynous and aggressive texts in Italian social media. Our analysis shows that simple classifiers with little feature engineering have a strong tendency to overfit and yield a strong bias on the test set. Additionally, we investigate the usefulness of function words, pronouns, and shallow-syntactical features to observe whether misogynous or aggressive texts have specific stylistic elements.\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.6819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本报告中,我们提出了一套香草分类器,我们用它来识别意大利社交媒体上的厌女和攻击性文本。我们的分析表明,带有少量特征工程的简单分类器有很强的过拟合倾向,并在测试集上产生很强的偏差。此外,我们还研究了虚词、代词和浅层句法特征的有用性,以观察厌女或攻击性文本是否具有特定的风格元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MDD @ AMI: Vanilla Classifiers for Misogyny Identification (short paper)
In this report1, we present a set of vanilla classifiers that we used to identify misogynous and aggressive texts in Italian social media. Our analysis shows that simple classifiers with little feature engineering have a strong tendency to overfit and yield a strong bias on the test set. Additionally, we investigate the usefulness of function words, pronouns, and shallow-syntactical features to observe whether misogynous or aggressive texts have specific stylistic elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1