{"title":"MDD @ AMI:鉴别厌女症的香草分类器(短文)","authors":"Samer El Abassi, Sergiu Nisioi","doi":"10.4000/BOOKS.AACCADEMIA.6819","DOIUrl":null,"url":null,"abstract":"In this report1, we present a set of vanilla classifiers that we used to identify misogynous and aggressive texts in Italian social media. Our analysis shows that simple classifiers with little feature engineering have a strong tendency to overfit and yield a strong bias on the test set. Additionally, we investigate the usefulness of function words, pronouns, and shallow-syntactical features to observe whether misogynous or aggressive texts have specific stylistic elements.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MDD @ AMI: Vanilla Classifiers for Misogyny Identification (short paper)\",\"authors\":\"Samer El Abassi, Sergiu Nisioi\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.6819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this report1, we present a set of vanilla classifiers that we used to identify misogynous and aggressive texts in Italian social media. Our analysis shows that simple classifiers with little feature engineering have a strong tendency to overfit and yield a strong bias on the test set. Additionally, we investigate the usefulness of function words, pronouns, and shallow-syntactical features to observe whether misogynous or aggressive texts have specific stylistic elements.\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.6819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MDD @ AMI: Vanilla Classifiers for Misogyny Identification (short paper)
In this report1, we present a set of vanilla classifiers that we used to identify misogynous and aggressive texts in Italian social media. Our analysis shows that simple classifiers with little feature engineering have a strong tendency to overfit and yield a strong bias on the test set. Additionally, we investigate the usefulness of function words, pronouns, and shallow-syntactical features to observe whether misogynous or aggressive texts have specific stylistic elements.