通过图像搜索引擎查找事件视频

Han Wang, Xinxiao Wu
{"title":"通过图像搜索引擎查找事件视频","authors":"Han Wang, Xinxiao Wu","doi":"10.1109/ICDMW.2015.78","DOIUrl":null,"url":null,"abstract":"Searching desirable events in uncontrolled videos isa challenging task. Current researches mainly focus on obtaining concepts from numerous labeled videos. But it is time consumingand labor expensive to collect a large amount of required labeled videos to model events under various circumstances. To alleviate the labeling process, we propose to learn models for videos by leveraging abundant Web images which contains a rich source of information with many events taken under various conditions and roughly annotated. However, knowledge from the Web is noisy and diverse, brute force knowledge transfer may hurt the retrieval performance. To address such negative transfer problem, we propose a novel Joint Group Weighting Learning (JGWL) framework to leverage different but related groups of knowledge (source domain) queried from the Web image searching engine to real-world videos (target domain). Under this framework, weights of different groups are learned in a joint optimization framework, and each weight represents how contributive the corresponding image group is to the knowledge transferred to the videos. Moreover, to deal with the feature distribution mismatching between video feature space and image feature space, we build a common feature subspace to bridge these two heterogeneous feature spaces in an unsupervised manner. Experimental results on two challenging video datasets demonstrate that it is effective to use grouped knowledge gained from Web images for video retrieval.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finding Event Videos via Image Search Engine\",\"authors\":\"Han Wang, Xinxiao Wu\",\"doi\":\"10.1109/ICDMW.2015.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Searching desirable events in uncontrolled videos isa challenging task. Current researches mainly focus on obtaining concepts from numerous labeled videos. But it is time consumingand labor expensive to collect a large amount of required labeled videos to model events under various circumstances. To alleviate the labeling process, we propose to learn models for videos by leveraging abundant Web images which contains a rich source of information with many events taken under various conditions and roughly annotated. However, knowledge from the Web is noisy and diverse, brute force knowledge transfer may hurt the retrieval performance. To address such negative transfer problem, we propose a novel Joint Group Weighting Learning (JGWL) framework to leverage different but related groups of knowledge (source domain) queried from the Web image searching engine to real-world videos (target domain). Under this framework, weights of different groups are learned in a joint optimization framework, and each weight represents how contributive the corresponding image group is to the knowledge transferred to the videos. Moreover, to deal with the feature distribution mismatching between video feature space and image feature space, we build a common feature subspace to bridge these two heterogeneous feature spaces in an unsupervised manner. Experimental results on two challenging video datasets demonstrate that it is effective to use grouped knowledge gained from Web images for video retrieval.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在不受控制的视频中搜索理想事件是一项具有挑战性的任务。目前的研究主要集中在从大量标记视频中获取概念。但是,收集大量需要标记的视频来模拟各种情况下的事件是费时费力的。为了简化标记过程,我们建议利用大量的Web图像来学习视频模型,这些图像包含丰富的信息源,其中包含在各种条件下拍摄的许多事件,并进行了粗略的注释。然而,来自Web的知识具有噪声和多样性,暴力知识迁移可能会影响检索性能。为了解决这种负迁移问题,我们提出了一种新的联合组加权学习(JGWL)框架,利用从Web图像搜索引擎查询的不同但相关的知识组(源域)到现实世界的视频(目标域)。在该框架下,在联合优化框架中学习不同组的权重,每个权重表示相应图像组对转移到视频的知识的贡献程度。此外,为了解决视频特征空间和图像特征空间之间的特征分布不匹配问题,我们构建了一个公共特征子空间,以无监督的方式在这两个异构特征空间之间架起桥梁。在两个具有挑战性的视频数据集上的实验结果表明,利用从Web图像中获得的分组知识进行视频检索是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding Event Videos via Image Search Engine
Searching desirable events in uncontrolled videos isa challenging task. Current researches mainly focus on obtaining concepts from numerous labeled videos. But it is time consumingand labor expensive to collect a large amount of required labeled videos to model events under various circumstances. To alleviate the labeling process, we propose to learn models for videos by leveraging abundant Web images which contains a rich source of information with many events taken under various conditions and roughly annotated. However, knowledge from the Web is noisy and diverse, brute force knowledge transfer may hurt the retrieval performance. To address such negative transfer problem, we propose a novel Joint Group Weighting Learning (JGWL) framework to leverage different but related groups of knowledge (source domain) queried from the Web image searching engine to real-world videos (target domain). Under this framework, weights of different groups are learned in a joint optimization framework, and each weight represents how contributive the corresponding image group is to the knowledge transferred to the videos. Moreover, to deal with the feature distribution mismatching between video feature space and image feature space, we build a common feature subspace to bridge these two heterogeneous feature spaces in an unsupervised manner. Experimental results on two challenging video datasets demonstrate that it is effective to use grouped knowledge gained from Web images for video retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1