基于改进前向反传播神经网络的彩色图像压缩:使用不同距离度量提高图像质量

D. Mishra, N. Bose, A. Tolambiya, A. Dwivedi, P. Kandula, Ashiwani Kumar, P. Kalra
{"title":"基于改进前向反传播神经网络的彩色图像压缩:使用不同距离度量提高图像质量","authors":"D. Mishra, N. Bose, A. Tolambiya, A. Dwivedi, P. Kandula, Ashiwani Kumar, P. Kalra","doi":"10.1109/ICIT.2006.37","DOIUrl":null,"url":null,"abstract":"A modified forward-only counterpropagation neural network (MFO-CPN) for color image compression is proposed. It uses several higher-order distance measures for calculating winning node. It also incorporates nonlinear adjustment of learning rates in both the layers. Results with these distance functions are compared. Proposed modifications leads to improvement in the image quality and faster convergence of network.","PeriodicalId":161120,"journal":{"name":"9th International Conference on Information Technology (ICIT'06)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Color Image Compression with Modified Forward-Only Counterpropagation Neural Network: Improvement of the Quality using Different Distance Measures\",\"authors\":\"D. Mishra, N. Bose, A. Tolambiya, A. Dwivedi, P. Kandula, Ashiwani Kumar, P. Kalra\",\"doi\":\"10.1109/ICIT.2006.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modified forward-only counterpropagation neural network (MFO-CPN) for color image compression is proposed. It uses several higher-order distance measures for calculating winning node. It also incorporates nonlinear adjustment of learning rates in both the layers. Results with these distance functions are compared. Proposed modifications leads to improvement in the image quality and faster convergence of network.\",\"PeriodicalId\":161120,\"journal\":{\"name\":\"9th International Conference on Information Technology (ICIT'06)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Conference on Information Technology (ICIT'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2006.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Information Technology (ICIT'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2006.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

提出了一种改进的纯前向反传播神经网络(MFO-CPN)用于彩色图像压缩。它使用几个高阶距离度量来计算获胜节点。它还结合了两层学习率的非线性调整。比较了这些距离函数的计算结果。改进后的图像质量得到改善,网络收敛速度加快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Color Image Compression with Modified Forward-Only Counterpropagation Neural Network: Improvement of the Quality using Different Distance Measures
A modified forward-only counterpropagation neural network (MFO-CPN) for color image compression is proposed. It uses several higher-order distance measures for calculating winning node. It also incorporates nonlinear adjustment of learning rates in both the layers. Results with these distance functions are compared. Proposed modifications leads to improvement in the image quality and faster convergence of network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Novel Reversible Carry Look-Ahead BCD Subtractor Design of a Framework for Handling Security Issues in Grids A Programmable Parallel Structure to perform Galois Field Exponentiation Voice Conversion by Prosody and Vocal Tract Modification Use of Instance Typicality for Efficient Detection of Outliers with Neural Network Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1