{"title":"图像分类的多层特征提取——来自深度cnn的知识","authors":"K. Ueki, Tetsunori Kobayashi","doi":"10.1109/IWSSIP.2015.7313925","DOIUrl":null,"url":null,"abstract":"Recently, there has been considerable research into the application of deep learning to image recognition. Notably, deep convolutional neural networks (CNNs) have achieved excellent performance in a number of image classification tasks, compared with conventional methods based on techniques such as Bag-of-Features (BoF) using local descriptors. In this paper, to cultivate a better understanding of the structure of CNN, we focus on the characteristics of deep CNNs, and adapt them to SIFT+BoF-based methods to improve the classification accuracy. We introduce the multi-layer structure of CNNs into the classification pipeline of the BoF framework, and conduct experiments to confirm the effectiveness of this approach using a fine-grained visual categorization dataset. The results show that the average classification rate is improved from 52.4% to 69.8%.","PeriodicalId":249021,"journal":{"name":"2015 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multi-layer feature extractions for image classification — Knowledge from deep CNNs\",\"authors\":\"K. Ueki, Tetsunori Kobayashi\",\"doi\":\"10.1109/IWSSIP.2015.7313925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, there has been considerable research into the application of deep learning to image recognition. Notably, deep convolutional neural networks (CNNs) have achieved excellent performance in a number of image classification tasks, compared with conventional methods based on techniques such as Bag-of-Features (BoF) using local descriptors. In this paper, to cultivate a better understanding of the structure of CNN, we focus on the characteristics of deep CNNs, and adapt them to SIFT+BoF-based methods to improve the classification accuracy. We introduce the multi-layer structure of CNNs into the classification pipeline of the BoF framework, and conduct experiments to confirm the effectiveness of this approach using a fine-grained visual categorization dataset. The results show that the average classification rate is improved from 52.4% to 69.8%.\",\"PeriodicalId\":249021,\"journal\":{\"name\":\"2015 International Conference on Systems, Signals and Image Processing (IWSSIP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Systems, Signals and Image Processing (IWSSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSSIP.2015.7313925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2015.7313925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-layer feature extractions for image classification — Knowledge from deep CNNs
Recently, there has been considerable research into the application of deep learning to image recognition. Notably, deep convolutional neural networks (CNNs) have achieved excellent performance in a number of image classification tasks, compared with conventional methods based on techniques such as Bag-of-Features (BoF) using local descriptors. In this paper, to cultivate a better understanding of the structure of CNN, we focus on the characteristics of deep CNNs, and adapt them to SIFT+BoF-based methods to improve the classification accuracy. We introduce the multi-layer structure of CNNs into the classification pipeline of the BoF framework, and conduct experiments to confirm the effectiveness of this approach using a fine-grained visual categorization dataset. The results show that the average classification rate is improved from 52.4% to 69.8%.