从动态几何交互数据中推断社会情境的证据

Georg Groh, Alexander Lehmann
{"title":"从动态几何交互数据中推断社会情境的证据","authors":"Georg Groh, Alexander Lehmann","doi":"10.1504/IJSCCPS.2011.044174","DOIUrl":null,"url":null,"abstract":"We discuss how time-independent and time-dependent features of human social interaction geometry on small temporal and spatial scales may be used to extract evidence for or against the existence of social situations as a simple form of social context. Aside from providing a new method for quantitative investigation of human interaction behaviour, the ultimate vision motivating this research focuses on mobile devices autonomously measuring and processing data on interaction geometries in order to derive social situation context that can be used in mobile social networking scenarios. Our method is tested via an experiment using an IR tracking method already allowing for the precise determination of interpersonal distances and relative body orientation in a conversational setting. We investigate the performance of time-independent classifiers for the prediction of the involvement of pairs of persons in a social situation using relative distance and orientation. We then discuss results of using HMMs for exploiting the time-dependency of the interaction geometry.","PeriodicalId":220482,"journal":{"name":"Int. J. Soc. Comput. Cyber Phys. Syst.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deducing evidence for social situations from dynamic geometric interaction data\",\"authors\":\"Georg Groh, Alexander Lehmann\",\"doi\":\"10.1504/IJSCCPS.2011.044174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss how time-independent and time-dependent features of human social interaction geometry on small temporal and spatial scales may be used to extract evidence for or against the existence of social situations as a simple form of social context. Aside from providing a new method for quantitative investigation of human interaction behaviour, the ultimate vision motivating this research focuses on mobile devices autonomously measuring and processing data on interaction geometries in order to derive social situation context that can be used in mobile social networking scenarios. Our method is tested via an experiment using an IR tracking method already allowing for the precise determination of interpersonal distances and relative body orientation in a conversational setting. We investigate the performance of time-independent classifiers for the prediction of the involvement of pairs of persons in a social situation using relative distance and orientation. We then discuss results of using HMMs for exploiting the time-dependency of the interaction geometry.\",\"PeriodicalId\":220482,\"journal\":{\"name\":\"Int. J. Soc. Comput. Cyber Phys. Syst.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Soc. Comput. Cyber Phys. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSCCPS.2011.044174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Soc. Comput. Cyber Phys. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSCCPS.2011.044174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们讨论了如何在小时间和空间尺度上使用人类社会互动几何的时间独立和时间依赖特征来提取支持或反对社会情境作为社会背景的简单形式存在的证据。除了提供一种定量研究人类交互行为的新方法外,推动本研究的最终愿景是关注移动设备自主测量和处理交互几何数据,以获得可用于移动社交网络场景的社交情境背景。我们的方法通过实验进行了测试,使用红外跟踪方法已经允许在会话设置中精确确定人际距离和相对身体方向。我们研究了时间独立分类器的性能,用于使用相对距离和方向预测社会情境中成对人员的参与。然后,我们讨论了使用hmm来开发相互作用几何的时间依赖性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deducing evidence for social situations from dynamic geometric interaction data
We discuss how time-independent and time-dependent features of human social interaction geometry on small temporal and spatial scales may be used to extract evidence for or against the existence of social situations as a simple form of social context. Aside from providing a new method for quantitative investigation of human interaction behaviour, the ultimate vision motivating this research focuses on mobile devices autonomously measuring and processing data on interaction geometries in order to derive social situation context that can be used in mobile social networking scenarios. Our method is tested via an experiment using an IR tracking method already allowing for the precise determination of interpersonal distances and relative body orientation in a conversational setting. We investigate the performance of time-independent classifiers for the prediction of the involvement of pairs of persons in a social situation using relative distance and orientation. We then discuss results of using HMMs for exploiting the time-dependency of the interaction geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting malicious users in the social networks using machine learning approach Privacy-preserving targeted online advertising Cyber-squatting: a cyber crime more than an unethical act The troika of artificial intelligence, emotional intelligence and customer intelligence Implementation of an efficient and intelligent Indian maritime borderline alert system using IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1