通过参数空间剪枝实现软件性能模型的高效优化

M. Tribastone
{"title":"通过参数空间剪枝实现软件性能模型的高效优化","authors":"M. Tribastone","doi":"10.1145/2568088.2568090","DOIUrl":null,"url":null,"abstract":"When performance characteristics are taken into account in a software design, models can be used to identify optimal configurations of the system's parameters. Unfortunately, for realistic scenarios, the cost of the optimization is typically high, leading to computational difficulties in the exploration of large parameter spaces. This paper proposes an approach to provably exact parameter-space pruning for a class of models of large-scale software systems analyzed with fluid techniques, efficient and scalable deterministic approximations of massively parallel stochastic models. We present a result of monotonicity of fluid solutions with respect to the model parameters, and employ it in the context of optimization programs with evolutionary algorithms by discarding candidate configurations a priori, i.e., without ever solving them, whenever they are proven to give lower fitness than other configurations. An extensive numerical validation shows that this approach yields an average twofold runtime speed-up compared to a baseline optimization algorithm that does not exploit monotonicity. Furthermore, we find that the optimal configuration is within a few percent from the true one obtained by stochastic simulation, whose solution is however orders of magnitude more expensive.","PeriodicalId":243233,"journal":{"name":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","volume":"446 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Efficient optimization of software performance models via parameter-space pruning\",\"authors\":\"M. Tribastone\",\"doi\":\"10.1145/2568088.2568090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When performance characteristics are taken into account in a software design, models can be used to identify optimal configurations of the system's parameters. Unfortunately, for realistic scenarios, the cost of the optimization is typically high, leading to computational difficulties in the exploration of large parameter spaces. This paper proposes an approach to provably exact parameter-space pruning for a class of models of large-scale software systems analyzed with fluid techniques, efficient and scalable deterministic approximations of massively parallel stochastic models. We present a result of monotonicity of fluid solutions with respect to the model parameters, and employ it in the context of optimization programs with evolutionary algorithms by discarding candidate configurations a priori, i.e., without ever solving them, whenever they are proven to give lower fitness than other configurations. An extensive numerical validation shows that this approach yields an average twofold runtime speed-up compared to a baseline optimization algorithm that does not exploit monotonicity. Furthermore, we find that the optimal configuration is within a few percent from the true one obtained by stochastic simulation, whose solution is however orders of magnitude more expensive.\",\"PeriodicalId\":243233,\"journal\":{\"name\":\"Proceedings of the 5th ACM/SPEC international conference on Performance engineering\",\"volume\":\"446 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM/SPEC international conference on Performance engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2568088.2568090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2568088.2568090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

当在软件设计中考虑到性能特征时,可以使用模型来确定系统参数的最佳配置。不幸的是,对于现实场景,优化的成本通常很高,导致在探索大参数空间时出现计算困难。本文提出了用流体技术分析的一类大型软件系统模型的可证明精确参数空间剪枝方法,以及大规模并行随机模型的有效和可扩展的确定性近似。我们提出了流体解相对于模型参数的单调性的结果,并将其应用于具有进化算法的优化程序中,通过先验地丢弃候选配置,即,当它们被证明具有比其他配置更低的适应度时,无需求解它们。广泛的数值验证表明,与不利用单调性的基线优化算法相比,这种方法产生了平均两倍的运行时加速。此外,我们发现最优配置与随机模拟得到的真实配置相差不到几个百分点,但其解要贵几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient optimization of software performance models via parameter-space pruning
When performance characteristics are taken into account in a software design, models can be used to identify optimal configurations of the system's parameters. Unfortunately, for realistic scenarios, the cost of the optimization is typically high, leading to computational difficulties in the exploration of large parameter spaces. This paper proposes an approach to provably exact parameter-space pruning for a class of models of large-scale software systems analyzed with fluid techniques, efficient and scalable deterministic approximations of massively parallel stochastic models. We present a result of monotonicity of fluid solutions with respect to the model parameters, and employ it in the context of optimization programs with evolutionary algorithms by discarding candidate configurations a priori, i.e., without ever solving them, whenever they are proven to give lower fitness than other configurations. An extensive numerical validation shows that this approach yields an average twofold runtime speed-up compared to a baseline optimization algorithm that does not exploit monotonicity. Furthermore, we find that the optimal configuration is within a few percent from the true one obtained by stochastic simulation, whose solution is however orders of magnitude more expensive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The taming of the shrew: increasing performance by automatic parameter tuning for java garbage collectors Uncertainties in the modeling of self-adaptive systems: a taxonomy and an example of availability evaluation Scalable hybrid stream and hadoop network analysis system Efficient optimization of software performance models via parameter-space pruning Real-time multi-cloud management needs application awareness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1