Anna-Maria Georgarakis, R. Stämpfli, P. Wolf, R. Riener, Jaime E. Duarte
{"title":"一种可穿戴机器人相互作用力的量化方法*","authors":"Anna-Maria Georgarakis, R. Stämpfli, P. Wolf, R. Riener, Jaime E. Duarte","doi":"10.1109/BIOROB.2018.8487701","DOIUrl":null,"url":null,"abstract":"Immobility due to movement impairments causes many secondary conditions that are a threat to a person's health and quality of life. Wearable robotic mobility aids such as exoskeletons and exosuits are a promising technique to tackle immobility. These devices are attached to the human with cuffs. However, the physical interaction at the human-robot interface is not yet well understood. Misplacement and compression of soft tissue diminish the efficiency of the robot and the comfort for the human. We developed a measurement method that allows us to simultaneously measure cuff interaction forces in normal and tangential direction. The measurement setup was validated in a friction test bench. The test-retest reliability was evaluated in an isolated attachment cuff mounted on a human forearm. Force measurements were repeatable, with error ranges up to 28.7% or 7.8 N in normal, 28.7% or 2.3 N in tangential direction. Our method is the first approach that simultaneously measures normal and tangential forces at the physical interface of wearable robots. The test-retest reliability is within the range of methods that assess only normal forces.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Method for Quantifying Interaction Forces in Wearable Robots*\",\"authors\":\"Anna-Maria Georgarakis, R. Stämpfli, P. Wolf, R. Riener, Jaime E. Duarte\",\"doi\":\"10.1109/BIOROB.2018.8487701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Immobility due to movement impairments causes many secondary conditions that are a threat to a person's health and quality of life. Wearable robotic mobility aids such as exoskeletons and exosuits are a promising technique to tackle immobility. These devices are attached to the human with cuffs. However, the physical interaction at the human-robot interface is not yet well understood. Misplacement and compression of soft tissue diminish the efficiency of the robot and the comfort for the human. We developed a measurement method that allows us to simultaneously measure cuff interaction forces in normal and tangential direction. The measurement setup was validated in a friction test bench. The test-retest reliability was evaluated in an isolated attachment cuff mounted on a human forearm. Force measurements were repeatable, with error ranges up to 28.7% or 7.8 N in normal, 28.7% or 2.3 N in tangential direction. Our method is the first approach that simultaneously measures normal and tangential forces at the physical interface of wearable robots. The test-retest reliability is within the range of methods that assess only normal forces.\",\"PeriodicalId\":382522,\"journal\":{\"name\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2018.8487701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8487701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Method for Quantifying Interaction Forces in Wearable Robots*
Immobility due to movement impairments causes many secondary conditions that are a threat to a person's health and quality of life. Wearable robotic mobility aids such as exoskeletons and exosuits are a promising technique to tackle immobility. These devices are attached to the human with cuffs. However, the physical interaction at the human-robot interface is not yet well understood. Misplacement and compression of soft tissue diminish the efficiency of the robot and the comfort for the human. We developed a measurement method that allows us to simultaneously measure cuff interaction forces in normal and tangential direction. The measurement setup was validated in a friction test bench. The test-retest reliability was evaluated in an isolated attachment cuff mounted on a human forearm. Force measurements were repeatable, with error ranges up to 28.7% or 7.8 N in normal, 28.7% or 2.3 N in tangential direction. Our method is the first approach that simultaneously measures normal and tangential forces at the physical interface of wearable robots. The test-retest reliability is within the range of methods that assess only normal forces.