一种基于脉冲信号的情感识别特征选择方法

Hong Chen, Guangyuan Liu, Xie Xiong
{"title":"一种基于脉冲信号的情感识别特征选择方法","authors":"Hong Chen, Guangyuan Liu, Xie Xiong","doi":"10.1109/ISCID.2011.36","DOIUrl":null,"url":null,"abstract":"For the problem of affective recognition from pulse signal, a new feature selection method which combines correlation analysis with max-min ant colony algorithm is proposed in this paper, and stable feature subsets with good performance are found to construct affective recognition model. Firstly, sequential backward selection (SBS) is used for sorting of the original features. Secondly, the linear correlation coefficient is adopted to compute the correlation degrees between the features and features with high correlation degrees are removed through the result of sorting. Finally, max-min ant colony algorithm is used for feature selection, which searches for an optimal subset based on the compact feature subset, and six emotions (happiness, surprise, disgust, grief, anger and fear) are recognized by means of Fisher classifier. The experimental results show that the method can construct effective affective recognition model through stable and effective feature subsets chosen from original features.","PeriodicalId":224504,"journal":{"name":"2011 Fourth International Symposium on Computational Intelligence and Design","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Novel Feature Selection Method for Affective Recognition Based on Pulse Signal\",\"authors\":\"Hong Chen, Guangyuan Liu, Xie Xiong\",\"doi\":\"10.1109/ISCID.2011.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the problem of affective recognition from pulse signal, a new feature selection method which combines correlation analysis with max-min ant colony algorithm is proposed in this paper, and stable feature subsets with good performance are found to construct affective recognition model. Firstly, sequential backward selection (SBS) is used for sorting of the original features. Secondly, the linear correlation coefficient is adopted to compute the correlation degrees between the features and features with high correlation degrees are removed through the result of sorting. Finally, max-min ant colony algorithm is used for feature selection, which searches for an optimal subset based on the compact feature subset, and six emotions (happiness, surprise, disgust, grief, anger and fear) are recognized by means of Fisher classifier. The experimental results show that the method can construct effective affective recognition model through stable and effective feature subsets chosen from original features.\",\"PeriodicalId\":224504,\"journal\":{\"name\":\"2011 Fourth International Symposium on Computational Intelligence and Design\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2011.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2011.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对脉冲信号的情感识别问题,提出了一种将相关分析与最大最小蚁群算法相结合的特征选择方法,并找到性能良好的稳定特征子集来构建情感识别模型。首先,使用顺序向后选择(SBS)对原始特征进行排序。其次,采用线性相关系数计算特征之间的关联度,通过排序结果去除关联度高的特征;最后,采用最大最小蚁群算法进行特征选择,在压缩特征子集的基础上搜索最优子集,并通过Fisher分类器识别出快乐、惊讶、厌恶、悲伤、愤怒和恐惧6种情绪。实验结果表明,该方法可以通过从原始特征中选取稳定有效的特征子集,构建有效的情感识别模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Feature Selection Method for Affective Recognition Based on Pulse Signal
For the problem of affective recognition from pulse signal, a new feature selection method which combines correlation analysis with max-min ant colony algorithm is proposed in this paper, and stable feature subsets with good performance are found to construct affective recognition model. Firstly, sequential backward selection (SBS) is used for sorting of the original features. Secondly, the linear correlation coefficient is adopted to compute the correlation degrees between the features and features with high correlation degrees are removed through the result of sorting. Finally, max-min ant colony algorithm is used for feature selection, which searches for an optimal subset based on the compact feature subset, and six emotions (happiness, surprise, disgust, grief, anger and fear) are recognized by means of Fisher classifier. The experimental results show that the method can construct effective affective recognition model through stable and effective feature subsets chosen from original features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Public Electromagnetic Radiation Environment Comparison between China and Germany A Linear Camera Self-calibration Approach from Four Points Applications of Bayesian Network in Fault Diagnosis of Braking Deviation System Agent-Based Modelling and Simulation System for Mass Violence Event Intuitionistic Fuzzy Sets with Single Parameter and its Application to Pattern Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1