一种结合两阶段局部-空间兴趣点匹配算法

A. Dehghani, Alistair Sutherland
{"title":"一种结合两阶段局部-空间兴趣点匹配算法","authors":"A. Dehghani, Alistair Sutherland","doi":"10.1109/IRANIANMVIP.2013.6779959","DOIUrl":null,"url":null,"abstract":"A local-spatial interest point matching algorithm for articulated human upper body tracking application is proposed in this paper. The first stage finds confidently matched pairs of interest points from the reference and target interest point lists through a local-feature-descriptors-based matching method. Applying two cross-checking and displacement-checking steps reduces the number of mismatched pairs and results confidently matched pairs. Using these confidently matched pairs, the second stage recovers more matched interest point pairs from the remaining unmatched through the graph matching by a cyclic string matching algorithm. The proposed approach benefits from the speed of local matching algorithms as well as the accuracy and robustness of spatial matching methods. In addition, it compensates for the reference list leakage problem. Experimental results show that the combined two-stage interest matching method efficiently improves the matching process for articulated human upper body tracking.","PeriodicalId":297204,"journal":{"name":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A combined two-stage local-spatial interest point matching algorithm\",\"authors\":\"A. Dehghani, Alistair Sutherland\",\"doi\":\"10.1109/IRANIANMVIP.2013.6779959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A local-spatial interest point matching algorithm for articulated human upper body tracking application is proposed in this paper. The first stage finds confidently matched pairs of interest points from the reference and target interest point lists through a local-feature-descriptors-based matching method. Applying two cross-checking and displacement-checking steps reduces the number of mismatched pairs and results confidently matched pairs. Using these confidently matched pairs, the second stage recovers more matched interest point pairs from the remaining unmatched through the graph matching by a cyclic string matching algorithm. The proposed approach benefits from the speed of local matching algorithms as well as the accuracy and robustness of spatial matching methods. In addition, it compensates for the reference list leakage problem. Experimental results show that the combined two-stage interest matching method efficiently improves the matching process for articulated human upper body tracking.\",\"PeriodicalId\":297204,\"journal\":{\"name\":\"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANMVIP.2013.6779959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2013.6779959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种局部空间兴趣点匹配算法,用于关节式人体上半身跟踪。第一阶段通过基于局部特征描述符的匹配方法,从参考点和目标兴趣点列表中找到自信匹配的兴趣点对。应用两个交叉检查和位移检查步骤减少了不匹配对的数量,并得到了自信的匹配对。第二阶段利用这些自信匹配的兴趣点对,通过循环字符串匹配算法从剩余的不匹配图中恢复更多匹配的兴趣点对。该方法既具有局部匹配算法的快速性,又具有空间匹配方法的准确性和鲁棒性。此外,它还补偿了参考表泄漏问题。实验结果表明,结合两阶段兴趣匹配方法有效地改善了关节人体上半身跟踪的匹配过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A combined two-stage local-spatial interest point matching algorithm
A local-spatial interest point matching algorithm for articulated human upper body tracking application is proposed in this paper. The first stage finds confidently matched pairs of interest points from the reference and target interest point lists through a local-feature-descriptors-based matching method. Applying two cross-checking and displacement-checking steps reduces the number of mismatched pairs and results confidently matched pairs. Using these confidently matched pairs, the second stage recovers more matched interest point pairs from the remaining unmatched through the graph matching by a cyclic string matching algorithm. The proposed approach benefits from the speed of local matching algorithms as well as the accuracy and robustness of spatial matching methods. In addition, it compensates for the reference list leakage problem. Experimental results show that the combined two-stage interest matching method efficiently improves the matching process for articulated human upper body tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated lung CT image segmentation using kernel mean shift analysis A simple and efficient approach for 3D model decomposition MRI image reconstruction via new K-space sampling scheme based on separable transform Fusion of SPECT and MRI images using back and fore ground information Real time occlusion handling using Kalman Filter and mean-shift
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1