人群中隐写的行为能力法

Andrew D. Ker
{"title":"人群中隐写的行为能力法","authors":"Andrew D. Ker","doi":"10.1145/3531536.3532948","DOIUrl":null,"url":null,"abstract":"A steganographer is not only hiding a payload inside their cover, they are also hiding themselves amongst the non-steganographers. In this paper we study asymptotic rates of growth for steganographic data -- analogous to the classical Square-Root Law -- in the context of a 'crowd' of K actors, one of whom is a steganographer. This converts steganalysis from a binary to a K-class classification problem, and requires some new information-theoretic tools. Intuition suggests that larger K should enable the steganographer to hide a larger payload, since their stego signal is mixed in with larger amounts of cover noise from the other actors. We show that this is indeed the case, in a simple independent-pixel model, with payload growing at O(√(log K)) times the classical Square-Root capacity in the case of homogeneous actors. Further, examining the effects of heterogeneity reveals a subtle dependence on the detector's knowledge about the payload size, and the need for them to use negative as well as positive information to identify the steganographer.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacity Laws for Steganography in a Crowd\",\"authors\":\"Andrew D. Ker\",\"doi\":\"10.1145/3531536.3532948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A steganographer is not only hiding a payload inside their cover, they are also hiding themselves amongst the non-steganographers. In this paper we study asymptotic rates of growth for steganographic data -- analogous to the classical Square-Root Law -- in the context of a 'crowd' of K actors, one of whom is a steganographer. This converts steganalysis from a binary to a K-class classification problem, and requires some new information-theoretic tools. Intuition suggests that larger K should enable the steganographer to hide a larger payload, since their stego signal is mixed in with larger amounts of cover noise from the other actors. We show that this is indeed the case, in a simple independent-pixel model, with payload growing at O(√(log K)) times the classical Square-Root capacity in the case of homogeneous actors. Further, examining the effects of heterogeneity reveals a subtle dependence on the detector's knowledge about the payload size, and the need for them to use negative as well as positive information to identify the steganographer.\",\"PeriodicalId\":164949,\"journal\":{\"name\":\"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531536.3532948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531536.3532948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

隐写者不仅在他们的掩护内隐藏有效载荷,他们也将自己隐藏在非隐写者中。在本文中,我们研究了隐写数据的渐近增长率——类似于经典的平方根定律——在K个参与者的“群体”背景下,其中一个参与者是隐写者。这将隐写分析从二进制问题转化为k类分类问题,并且需要一些新的信息理论工具。直觉表明,较大的K应该使隐写者能够隐藏更大的有效载荷,因为他们的隐写信号与来自其他参与者的大量掩蔽噪声混合在一起。我们表明,在一个简单的独立像素模型中确实是这样,在同质参与者的情况下,有效载荷以O(√(log K))倍的经典平方根容量增长。此外,检查异质性的影响揭示了探测器对有效载荷大小的知识的微妙依赖,以及他们需要使用消极和积极的信息来识别隐写者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Capacity Laws for Steganography in a Crowd
A steganographer is not only hiding a payload inside their cover, they are also hiding themselves amongst the non-steganographers. In this paper we study asymptotic rates of growth for steganographic data -- analogous to the classical Square-Root Law -- in the context of a 'crowd' of K actors, one of whom is a steganographer. This converts steganalysis from a binary to a K-class classification problem, and requires some new information-theoretic tools. Intuition suggests that larger K should enable the steganographer to hide a larger payload, since their stego signal is mixed in with larger amounts of cover noise from the other actors. We show that this is indeed the case, in a simple independent-pixel model, with payload growing at O(√(log K)) times the classical Square-Root capacity in the case of homogeneous actors. Further, examining the effects of heterogeneity reveals a subtle dependence on the detector's knowledge about the payload size, and the need for them to use negative as well as positive information to identify the steganographer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FMFCC-V: An Asian Large-Scale Challenging Dataset for DeepFake Detection Hiding Needles in a Haystack: Towards Constructing Neural Networks that Evade Verification Session details: Session 3: Security & Privacy I Capacity Laws for Steganography in a Crowd Session details: Session 5: Security & Privacy II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1