基于粒子群算法的人脸识别Gabor滤波器选择

Jiarui Zhou, Z. Ji, L. Shen, Zexuan Zhu, Siping Chen
{"title":"基于粒子群算法的人脸识别Gabor滤波器选择","authors":"Jiarui Zhou, Z. Ji, L. Shen, Zexuan Zhu, Siping Chen","doi":"10.1109/MC.2011.5953631","DOIUrl":null,"url":null,"abstract":"A Gabor filters based face recognition algorithm named POMA-Gabor is proposed in this paper. The algorithm uses particular Gabor wavelets in the feature extraction on specific areas of the face image and a particle swarm optimization (PSO) based memetic algorithm (POMA), which combines comprehensive learning particle swarm optimizer (CLPSO) global search and self-adaptive intelligent single particle optimizer (AdpISPO) local search, is introduced to select the Gabor filter parameters. The experimental results demonstrate that POMA obtains better performance than other comparative PSO algorithms. Employing POMA for Gabor filter design, POMA-Gabor is capable of obtaining more representative information and higher recognition rate with less computational time.","PeriodicalId":441186,"journal":{"name":"2011 IEEE Workshop on Memetic Computing (MC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"PSO based memetic algorithm for face recognition Gabor filters selection\",\"authors\":\"Jiarui Zhou, Z. Ji, L. Shen, Zexuan Zhu, Siping Chen\",\"doi\":\"10.1109/MC.2011.5953631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Gabor filters based face recognition algorithm named POMA-Gabor is proposed in this paper. The algorithm uses particular Gabor wavelets in the feature extraction on specific areas of the face image and a particle swarm optimization (PSO) based memetic algorithm (POMA), which combines comprehensive learning particle swarm optimizer (CLPSO) global search and self-adaptive intelligent single particle optimizer (AdpISPO) local search, is introduced to select the Gabor filter parameters. The experimental results demonstrate that POMA obtains better performance than other comparative PSO algorithms. Employing POMA for Gabor filter design, POMA-Gabor is capable of obtaining more representative information and higher recognition rate with less computational time.\",\"PeriodicalId\":441186,\"journal\":{\"name\":\"2011 IEEE Workshop on Memetic Computing (MC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Memetic Computing (MC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MC.2011.5953631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Memetic Computing (MC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MC.2011.5953631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

提出了一种基于Gabor滤波器的人脸识别算法POMA-Gabor。该算法使用特定Gabor小波对人脸图像的特定区域进行特征提取,并引入基于粒子群优化(PSO)的模因算法(POMA),该算法结合了综合学习粒子群优化(CLPSO)全局搜索和自适应智能单粒子优化(AdpISPO)局部搜索来选择Gabor滤波器参数。实验结果表明,POMA算法比其他比较PSO算法具有更好的性能。采用POMA进行Gabor滤波器设计,能够以更少的计算时间获得更多的代表性信息和更高的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PSO based memetic algorithm for face recognition Gabor filters selection
A Gabor filters based face recognition algorithm named POMA-Gabor is proposed in this paper. The algorithm uses particular Gabor wavelets in the feature extraction on specific areas of the face image and a particle swarm optimization (PSO) based memetic algorithm (POMA), which combines comprehensive learning particle swarm optimizer (CLPSO) global search and self-adaptive intelligent single particle optimizer (AdpISPO) local search, is introduced to select the Gabor filter parameters. The experimental results demonstrate that POMA obtains better performance than other comparative PSO algorithms. Employing POMA for Gabor filter design, POMA-Gabor is capable of obtaining more representative information and higher recognition rate with less computational time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural meta-memes framework for managing search algorithms in combinatorial optimization Memetic figure selection for cluster expansion in binary alloy systems PSO based memetic algorithm for face recognition Gabor filters selection Hybrid Algorithm based on Differential Immune Clone with Orthogonal design method Super-fit and population size reduction in compact Differential Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1