论香农能力与因果估计

Rahul Kidambi, Sreeram Kannan
{"title":"论香农能力与因果估计","authors":"Rahul Kidambi, Sreeram Kannan","doi":"10.1109/ALLERTON.2015.7447115","DOIUrl":null,"url":null,"abstract":"The problem of estimating causal relationships from purely observational data is studied in this paper. We observe samples from a pair of random variables (X,Y) and wish to estimate whether X causes Y or Y causes X. Any joint distribution can be factored as p<sub>X,Y</sub> = p<sub>X</sub> p<sub>Y|X</sub> = p<sub>Y</sub> p<sub>X|Y</sub> and therefore the “causal” direction cannot be inferred from the joint distribution without further assumptions. In this paper, we propose and study the utility of Shannon capacity as a metric for causal directionality estimation. This opens up several open questions and directions for future study.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Shannon capacity and causal estimation\",\"authors\":\"Rahul Kidambi, Sreeram Kannan\",\"doi\":\"10.1109/ALLERTON.2015.7447115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of estimating causal relationships from purely observational data is studied in this paper. We observe samples from a pair of random variables (X,Y) and wish to estimate whether X causes Y or Y causes X. Any joint distribution can be factored as p<sub>X,Y</sub> = p<sub>X</sub> p<sub>Y|X</sub> = p<sub>Y</sub> p<sub>X|Y</sub> and therefore the “causal” direction cannot be inferred from the joint distribution without further assumptions. In this paper, we propose and study the utility of Shannon capacity as a metric for causal directionality estimation. This opens up several open questions and directions for future study.\",\"PeriodicalId\":112948,\"journal\":{\"name\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2015.7447115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了从纯观测数据估计因果关系的问题。我们从一对随机变量(X,Y)中观察样本,并希望估计是X导致Y还是Y导致X。任何联合分布都可以被分解为pX,Y = pX pY|X = pY pX|Y,因此,如果没有进一步的假设,就不能从联合分布中推断出“因果”方向。在本文中,我们提出并研究了香农容量作为因果方向性估计度量的效用。这为未来的研究开辟了几个开放的问题和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Shannon capacity and causal estimation
The problem of estimating causal relationships from purely observational data is studied in this paper. We observe samples from a pair of random variables (X,Y) and wish to estimate whether X causes Y or Y causes X. Any joint distribution can be factored as pX,Y = pX pY|X = pY pX|Y and therefore the “causal” direction cannot be inferred from the joint distribution without further assumptions. In this paper, we propose and study the utility of Shannon capacity as a metric for causal directionality estimation. This opens up several open questions and directions for future study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust temporal logic model predictive control Efficient replication of queued tasks for latency reduction in cloud systems Cut-set bound is loose for Gaussian relay networks Improving MIMO detection performance in presence of phase noise using norm difference criterion Utility fair RAT selection in multi-homed LTE/802.11 networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1