Wei Huang, M. Stan, K. Sankaranarayanan, R. J. Ribando, K. Skadron
{"title":"多核设计从热的角度来看","authors":"Wei Huang, M. Stan, K. Sankaranarayanan, R. J. Ribando, K. Skadron","doi":"10.1145/1391469.1391660","DOIUrl":null,"url":null,"abstract":"Air cooling limits have been a major design challenge in recent years for integrated circuits. Multi-core exacerbates thermal challenges because power scales with the number of cores, but also creates new opportunities for temperature-aware design, because multi-core designs offer more design parameters than single-core designs. This paper investigates the relationship between core size and on-chip hot spot temperature and shows that with the same power density, smaller cores are cooler than larger cores due to a spatial low-pass filtering effect of temperature. This phenomenon suggests that designs exploiting low-pass filtering can dissipate more power within the same cooling budget than contemporary designs.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":"{\"title\":\"Many-core design from a thermal perspective\",\"authors\":\"Wei Huang, M. Stan, K. Sankaranarayanan, R. J. Ribando, K. Skadron\",\"doi\":\"10.1145/1391469.1391660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air cooling limits have been a major design challenge in recent years for integrated circuits. Multi-core exacerbates thermal challenges because power scales with the number of cores, but also creates new opportunities for temperature-aware design, because multi-core designs offer more design parameters than single-core designs. This paper investigates the relationship between core size and on-chip hot spot temperature and shows that with the same power density, smaller cores are cooler than larger cores due to a spatial low-pass filtering effect of temperature. This phenomenon suggests that designs exploiting low-pass filtering can dissipate more power within the same cooling budget than contemporary designs.\",\"PeriodicalId\":412696,\"journal\":{\"name\":\"2008 45th ACM/IEEE Design Automation Conference\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"115\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 45th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1391469.1391660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Air cooling limits have been a major design challenge in recent years for integrated circuits. Multi-core exacerbates thermal challenges because power scales with the number of cores, but also creates new opportunities for temperature-aware design, because multi-core designs offer more design parameters than single-core designs. This paper investigates the relationship between core size and on-chip hot spot temperature and shows that with the same power density, smaller cores are cooler than larger cores due to a spatial low-pass filtering effect of temperature. This phenomenon suggests that designs exploiting low-pass filtering can dissipate more power within the same cooling budget than contemporary designs.