{"title":"联邦云边缘学习的隐私保护激励机制","authors":"Tianyu Liu, Boya Di, Shupeng Wang, Lingyang Song","doi":"10.1109/GLOBECOM46510.2021.9685615","DOIUrl":null,"url":null,"abstract":"The federated learning scheme enhances the privacy preservation through avoiding the private data uploading in cloud-edge computing. However, the attacks against the uploaded model updates still cause private data leakage which demotivates the privacy-sensitive participating edge devices. Facing this issue, we aim to design a privacy-preserving incentive mechanism for the federated cloud-edge learning (PFCEL) system such that 1) the edge devices are motivated to actively contribute to the updated model uploading, 2) a trade-off between the private data leakage and the model accuracy is achieved. We formulate the incentive design problem as a three-layer Stackelberg game, where the server-device interaction is further formulated as a contract design problem. Extensive numerical evaluations demonstrate the effectiveness of our designed mechanism in terms of privacy preservation and system utility.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Privacy-Preserving Incentive Mechanism for Federated Cloud-Edge Learning\",\"authors\":\"Tianyu Liu, Boya Di, Shupeng Wang, Lingyang Song\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The federated learning scheme enhances the privacy preservation through avoiding the private data uploading in cloud-edge computing. However, the attacks against the uploaded model updates still cause private data leakage which demotivates the privacy-sensitive participating edge devices. Facing this issue, we aim to design a privacy-preserving incentive mechanism for the federated cloud-edge learning (PFCEL) system such that 1) the edge devices are motivated to actively contribute to the updated model uploading, 2) a trade-off between the private data leakage and the model accuracy is achieved. We formulate the incentive design problem as a three-layer Stackelberg game, where the server-device interaction is further formulated as a contract design problem. Extensive numerical evaluations demonstrate the effectiveness of our designed mechanism in terms of privacy preservation and system utility.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Privacy-Preserving Incentive Mechanism for Federated Cloud-Edge Learning
The federated learning scheme enhances the privacy preservation through avoiding the private data uploading in cloud-edge computing. However, the attacks against the uploaded model updates still cause private data leakage which demotivates the privacy-sensitive participating edge devices. Facing this issue, we aim to design a privacy-preserving incentive mechanism for the federated cloud-edge learning (PFCEL) system such that 1) the edge devices are motivated to actively contribute to the updated model uploading, 2) a trade-off between the private data leakage and the model accuracy is achieved. We formulate the incentive design problem as a three-layer Stackelberg game, where the server-device interaction is further formulated as a contract design problem. Extensive numerical evaluations demonstrate the effectiveness of our designed mechanism in terms of privacy preservation and system utility.